Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMKZ_2004_3_a25, author = {A. M. Ezhov}, title = {{\CYRZ}{\cyra}{\cyrd}{\cyra}{\cyrch}{\cyri} {{\CYRK}{\cyro}{\cyrsh}{\cyri}-{\CYRG}{\cyru}{\cyrr}{\cyrs}{\cyra}} {\cyrd}{\cyrl}{\cyrya} {\cyru}{\cyrr}{\cyra}{\cyrv}{\cyrn}{\cyre}{\cyrn}{\cyri}{\cyrya} {\cyrc}{\cyri}{\cyrl}{\cyri}{\cyrn}{\cyrd}{\cyrr}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyri}{\cyrh} {\cyrv}{\cyro}{\cyrl}{\cyrn}}, journal = {Matematicheskoe Modelirovanie i Kraevye Zadachi}, pages = {88--90}, publisher = {mathdoc}, volume = {3}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMKZ_2004_3_a25/} }
A. M. Ezhov. Задачи Коши-Гурса для уравнения цилиндрических волн. Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the All-Russian Scientific Conference (26–28 May 2004). Part 3, Tome 3 (2004), pp. 88-90. http://geodesic.mathdoc.fr/item/MMKZ_2004_3_a25/
[1] Trikomi F., Lektsii po uravneniyam v chastnykh proizvodnykh, IL, M., 1957, 520 pp.
[2] Polozhii G. N., Uravneniya matematicheskoi fiziki, Vysshaya shkola, M., 1964, 362 pp.
[3] Ezhov A. M., “Trekhmernyi analog pervoi zadachi Koshi–Gursa dlya uravneniya Eilera–Puassona”, Tr. desyatoi mezhvuz. konf. Ch. 3, Matem. modelirovanie i kraevye zadachi, SamGTU, Samara, 2000, 56–59