Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMKZ_2004_3_a17, author = {V. A. Geiler and A. V. Popov}, title = {{\CYRYA}{\cyrv}{\cyrn}{\cyro}{\cyrr}{\cyre}{\cyrsh}{\cyra}{\cyre}{\cyrm}{\cyra}{\cyrya} {\cyrm}{\cyro}{\cyrd}{\cyre}{\cyrl}{\cyrsftsn} {\cyrt}{\cyrr}{\cyre}{\cyrh}{\cyrm}{\cyre}{\cyrr}{\cyrn}{\cyro}{\cyrg}{\cyro} {\cyrm}{\cyra}{\cyrs}{\cyrs}{\cyri}{\cyrv}{\cyra} {\cyrk}{\cyrv}{\cyra}{\cyrn}{\cyrt}{\cyro}{\cyrv}{\cyrery}{\cyrh} {\cyrt}{\cyro}{\cyrch}{\cyre}{\cyrk}}, journal = {Matematicheskoe Modelirovanie i Kraevye Zadachi}, pages = {62--64}, publisher = {mathdoc}, volume = {3}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMKZ_2004_3_a17/} }
V. A. Geiler; A. V. Popov. Явнорешаемая модель трехмерного массива квантовых точек. Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the All-Russian Scientific Conference (26–28 May 2004). Part 3, Tome 3 (2004), pp. 62-64. http://geodesic.mathdoc.fr/item/MMKZ_2004_3_a17/
[1] M. Koshino, H. Aoki, K. Kuroki, S. Kagoshima, T. Osada, “Hofstadter butterfly and integer quantum Hall effect in three dimensions”, Phys. Rev. Lett., 86 (2001), 1062 | DOI
[2] M. Koshino, H. Aoki, T. Osada, K. Kuroki, S. Kagoshima, “Phase diagram for the Hofstadter butterfly and integer quantum Hall effect in three dimensions”, Phys. Rev. B, 65 (2002), 045310 | DOI
[3] M. Koshino, H. Aoki, “Integer quantum Hall effect in isotropic three-dimensional crystals”, Phys. Rev. B, 67 (2003), 195336 | DOI
[4] J. Bruning, V. V. Demidov, V. A. Geyler, “Hofstadter type spectral diagrams for the Bloch electron in three dimensions”, Phys. Rev. B, 69:3 (2004) | DOI
[5] V. A. Geyler, A. V. Popov, “Localization in a periodic system of the Aharonov-Bohm rings”, Rep. on Math. Phys., 42:3 (1997), 74 | MR
[6] V. A. Geyler, I. Yu. Popov, A. V. Popov, A. A. Ovechkina, “Fractal spectrum of periodic quantum systems in a magnetic field”, Chaos, Solit. and Fract., 11:1–3 (1999), 281 | DOI | MR