Явнорешаемые модели примеси нулевого радиуса в квантовых точках и квантовых ямах
Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the All-Russian Scientific Conference (26–28 May 2004). Part 3, Tome 3 (2004), pp. 57-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MMKZ_2004_3_a15,
     author = {V. A. Geiler and E. N. Grishanov},
     title = {{\CYRYA}{\cyrv}{\cyrn}{\cyro}{\cyrr}{\cyre}{\cyrsh}{\cyra}{\cyre}{\cyrm}{\cyrery}{\cyre} {\cyrm}{\cyro}{\cyrd}{\cyre}{\cyrl}{\cyri} {\cyrp}{\cyrr}{\cyri}{\cyrm}{\cyre}{\cyrs}{\cyri} {\cyrn}{\cyru}{\cyrl}{\cyre}{\cyrv}{\cyro}{\cyrg}{\cyro} {\cyrr}{\cyra}{\cyrd}{\cyri}{\cyru}{\cyrs}{\cyra} {\cyrv} {\cyrk}{\cyrv}{\cyra}{\cyrn}{\cyrt}{\cyro}{\cyrv}{\cyrery}{\cyrh} {\cyrt}{\cyro}{\cyrch}{\cyrk}{\cyra}{\cyrh} {\cyri} {\cyrk}{\cyrv}{\cyra}{\cyrn}{\cyrt}{\cyro}{\cyrv}{\cyrery}{\cyrh} {\cyrya}{\cyrm}{\cyra}{\cyrh}},
     journal = {Matematicheskoe Modelirovanie i Kraevye Zadachi},
     pages = {57--59},
     publisher = {mathdoc},
     volume = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMKZ_2004_3_a15/}
}
TY  - JOUR
AU  - V. A. Geiler
AU  - E. N. Grishanov
TI  - Явнорешаемые модели примеси нулевого радиуса в квантовых точках и квантовых ямах
JO  - Matematicheskoe Modelirovanie i Kraevye Zadachi
PY  - 2004
SP  - 57
EP  - 59
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMKZ_2004_3_a15/
LA  - ru
ID  - MMKZ_2004_3_a15
ER  - 
%0 Journal Article
%A V. A. Geiler
%A E. N. Grishanov
%T Явнорешаемые модели примеси нулевого радиуса в квантовых точках и квантовых ямах
%J Matematicheskoe Modelirovanie i Kraevye Zadachi
%D 2004
%P 57-59
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMKZ_2004_3_a15/
%G ru
%F MMKZ_2004_3_a15
V. A. Geiler; E. N. Grishanov. Явнорешаемые модели примеси нулевого радиуса в квантовых точках и квантовых ямах. Matematicheskoe Modelirovanie i Kraevye Zadachi, Proceedings of the All-Russian Scientific Conference (26–28 May 2004). Part 3, Tome 3 (2004), pp. 57-59. http://geodesic.mathdoc.fr/item/MMKZ_2004_3_a15/

[1] Gritsev V. V., Kurochkin Yu. A., “Model of excitations in quantum dots based on quantum mechanics in spaces of constant curvature”, Phys. Rev. B, 64 (2001), 035308-1–035308-9 | DOI

[2] Chaplik A. V, Blick R. H., “On geometric potentials in nanomechanical circuits”, New J. Phys., 6 (2004); arXiv: cond-mat/0308040 | DOI

[3] Bimberg D., Grundmann M., Ledentsov N. N., Quantum dot heterostructures, Wiley, Chichester, 1999

[4] Brüning J., Geyler V., Lobanov I., “Spectral properties of a short-range impurity in a quantum dot”, J. Math. Phys., 45:4 (2004) | MR | Zbl

[5] Brüning J., Geyler V. A., “Scattering on compact manifolds with infinitely thin horns”, J. Math. Phys., 44 (2003), 371–405 | DOI | MR | Zbl

[6] Albeverio S., Geiler V. A., Margulis V. A., “Svyazannye sostoyaniya v iskrivlennoi nanostrukture”, Pisma v ZhTF, 26:3 (2000), 18–22