Erratum: An analogue of the Brauer--Siegel theorem for Abelian varieties in positive characteristic
Moscow mathematical journal, Tome 22 (2022) no. 1.

Voir la notice de l'article provenant de la source Math-Net.Ru

An error in our article published in MMJ 16 (2016), 45–93, was found. As a result, some of the results of the named article should be considered unproven.
@article{MMJ_2022_22_1_a6,
     author = {Marc Hindry and Am{\'\i}lcar Pacheco},
     title = {Erratum: {An} analogue of the {Brauer--Siegel} theorem for {Abelian} varieties in positive characteristic},
     journal = {Moscow mathematical journal},
     pages = {169},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMJ_2022_22_1_a6/}
}
TY  - JOUR
AU  - Marc Hindry
AU  - Amílcar Pacheco
TI  - Erratum: An analogue of the Brauer--Siegel theorem for Abelian varieties in positive characteristic
JO  - Moscow mathematical journal
PY  - 2022
SP  - 169
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMJ_2022_22_1_a6/
LA  - en
ID  - MMJ_2022_22_1_a6
ER  - 
%0 Journal Article
%A Marc Hindry
%A Amílcar Pacheco
%T Erratum: An analogue of the Brauer--Siegel theorem for Abelian varieties in positive characteristic
%J Moscow mathematical journal
%D 2022
%P 169
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMJ_2022_22_1_a6/
%G en
%F MMJ_2022_22_1_a6
Marc Hindry; Amílcar Pacheco. Erratum: An analogue of the Brauer--Siegel theorem for Abelian varieties in positive characteristic. Moscow mathematical journal, Tome 22 (2022) no. 1. http://geodesic.mathdoc.fr/item/MMJ_2022_22_1_a6/

[1] M. Hindry and A. Pacheco, “An analogue of the Brauer–Siegel theorem for abelian varieties in positive characteristic”, Mosc. Math. J., 16:1 (2016), 45–93 | DOI | MR | Zbl

[2] J. Lu, M. Sheng, and K. Zuo, “An Arakelov inequality in characteristic $p$ and upper bound of $p$-rank zero locus”, J. Number Theory, 129:12 (2009), 3029–3045 | DOI | MR | Zbl

[3] A. Ogus and V. Vologodsky, “Nonabelian Hodge theory in characteristic $p$”, Publ. Math. Inst. Hautes Études Sci., 106, 2007, 1–138 | DOI | MR | Zbl