Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMJ_2022_22_1_a6, author = {Marc Hindry and Am{\'\i}lcar Pacheco}, title = {Erratum: {An} analogue of the {Brauer--Siegel} theorem for {Abelian} varieties in positive characteristic}, journal = {Moscow mathematical journal}, pages = {169}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MMJ_2022_22_1_a6/} }
TY - JOUR AU - Marc Hindry AU - Amílcar Pacheco TI - Erratum: An analogue of the Brauer--Siegel theorem for Abelian varieties in positive characteristic JO - Moscow mathematical journal PY - 2022 SP - 169 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMJ_2022_22_1_a6/ LA - en ID - MMJ_2022_22_1_a6 ER -
%0 Journal Article %A Marc Hindry %A Amílcar Pacheco %T Erratum: An analogue of the Brauer--Siegel theorem for Abelian varieties in positive characteristic %J Moscow mathematical journal %D 2022 %P 169 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMJ_2022_22_1_a6/ %G en %F MMJ_2022_22_1_a6
Marc Hindry; Amílcar Pacheco. Erratum: An analogue of the Brauer--Siegel theorem for Abelian varieties in positive characteristic. Moscow mathematical journal, Tome 22 (2022) no. 1. http://geodesic.mathdoc.fr/item/MMJ_2022_22_1_a6/
[1] M. Hindry and A. Pacheco, “An analogue of the Brauer–Siegel theorem for abelian varieties in positive characteristic”, Mosc. Math. J., 16:1 (2016), 45–93 | DOI | MR | Zbl
[2] J. Lu, M. Sheng, and K. Zuo, “An Arakelov inequality in characteristic $p$ and upper bound of $p$-rank zero locus”, J. Number Theory, 129:12 (2009), 3029–3045 | DOI | MR | Zbl
[3] A. Ogus and V. Vologodsky, “Nonabelian Hodge theory in characteristic $p$”, Publ. Math. Inst. Hautes Études Sci., 106, 2007, 1–138 | DOI | MR | Zbl