Erratum: An analogue of the Brauer--Siegel theorem for Abelian varieties in positive characteristic
Moscow mathematical journal, Tome 22 (2022) no. 1
Voir la notice de l'article provenant de la source Math-Net.Ru
An error in our article published in MMJ 16 (2016), 45–93, was found. As a result, some of the results of the named article should be considered unproven.
@article{MMJ_2022_22_1_a6,
author = {Marc Hindry and Am{\'\i}lcar Pacheco},
title = {Erratum: {An} analogue of the {Brauer--Siegel} theorem for {Abelian} varieties in positive characteristic},
journal = {Moscow mathematical journal},
pages = {169},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MMJ_2022_22_1_a6/}
}
TY - JOUR AU - Marc Hindry AU - Amílcar Pacheco TI - Erratum: An analogue of the Brauer--Siegel theorem for Abelian varieties in positive characteristic JO - Moscow mathematical journal PY - 2022 SP - 169 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMJ_2022_22_1_a6/ LA - en ID - MMJ_2022_22_1_a6 ER -
%0 Journal Article %A Marc Hindry %A Amílcar Pacheco %T Erratum: An analogue of the Brauer--Siegel theorem for Abelian varieties in positive characteristic %J Moscow mathematical journal %D 2022 %P 169 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMJ_2022_22_1_a6/ %G en %F MMJ_2022_22_1_a6
Marc Hindry; Amílcar Pacheco. Erratum: An analogue of the Brauer--Siegel theorem for Abelian varieties in positive characteristic. Moscow mathematical journal, Tome 22 (2022) no. 1. http://geodesic.mathdoc.fr/item/MMJ_2022_22_1_a6/