Erratum: An analogue of the Brauer–Siegel theorem for Abelian varieties in positive characteristic
Moscow mathematical journal, Tome 22 (2022) no. 1
Cet article a éte moissonné depuis la source Math-Net.Ru
An error in our article published in MMJ 16 (2016), 45–93, was found. As a result, some of the results of the named article should be considered unproven.
@article{MMJ_2022_22_1_a6,
author = {Marc Hindry and Am{\'\i}lcar Pacheco},
title = {Erratum: {An} analogue of the {Brauer{\textendash}Siegel} theorem for {Abelian} varieties in positive characteristic},
journal = {Moscow mathematical journal},
pages = {169},
year = {2022},
volume = {22},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MMJ_2022_22_1_a6/}
}
TY - JOUR AU - Marc Hindry AU - Amílcar Pacheco TI - Erratum: An analogue of the Brauer–Siegel theorem for Abelian varieties in positive characteristic JO - Moscow mathematical journal PY - 2022 SP - 169 VL - 22 IS - 1 UR - http://geodesic.mathdoc.fr/item/MMJ_2022_22_1_a6/ LA - en ID - MMJ_2022_22_1_a6 ER -
Marc Hindry; Amílcar Pacheco. Erratum: An analogue of the Brauer–Siegel theorem for Abelian varieties in positive characteristic. Moscow mathematical journal, Tome 22 (2022) no. 1. http://geodesic.mathdoc.fr/item/MMJ_2022_22_1_a6/
[1] M. Hindry and A. Pacheco, “An analogue of the Brauer–Siegel theorem for abelian varieties in positive characteristic”, Mosc. Math. J., 16:1 (2016), 45–93 | DOI | MR | Zbl
[2] J. Lu, M. Sheng, and K. Zuo, “An Arakelov inequality in characteristic $p$ and upper bound of $p$-rank zero locus”, J. Number Theory, 129:12 (2009), 3029–3045 | DOI | MR | Zbl
[3] A. Ogus and V. Vologodsky, “Nonabelian Hodge theory in characteristic $p$”, Publ. Math. Inst. Hautes Études Sci., 106, 2007, 1–138 | DOI | MR | Zbl