Cox model validity checking for several progressively censored samples
Matematičeskoe modelirovanie i čislennye metody, no. 13 (2017), pp. 102-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article proposes a nonparametric criterion of the Kiefer — Gihman type to test the Cox model validity for several progressively censored samples. As estimates of the reliability function for each sample we are using the Kaplan — Meyer ones. The paper proves that if the hypothesis is valid, the Kiefer — Gihman distribution can be used as an approximation of the asymptotic distribution of the criterionstatistics. Based on the particle random walk model over a multidimensional cells array, the paper has developed the method for calculating the exact statistics distributions. The article presents obtained probability values tables of the proposed statistics exact distributions for a wide range of samples possible values. Statistical modeling methods show Cox parameters estimating method consistency, based on the statistics minimization. We present the obtained estimates histograms for the developments exponential distribution to failure. The research results are used when analyzing the redundant technical systems of different multiplicity tests results operating in different operating conditions. Analyzed systems find applications in all industries — from machine building to radio electronic.
Keywords: nonparametric statistics, Kiefer — Gihman type criterion, Kaplan — Meyer estimates, progressive censoring, Cox model.
@article{MMCM_2017_13_a6,
     author = {V. I. Timonin and N. D. Tyannikova},
     title = {Cox model validity checking for several progressively censored samples},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {102--117},
     year = {2017},
     number = {13},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2017_13_a6/}
}
TY  - JOUR
AU  - V. I. Timonin
AU  - N. D. Tyannikova
TI  - Cox model validity checking for several progressively censored samples
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2017
SP  - 102
EP  - 117
IS  - 13
UR  - http://geodesic.mathdoc.fr/item/MMCM_2017_13_a6/
LA  - ru
ID  - MMCM_2017_13_a6
ER  - 
%0 Journal Article
%A V. I. Timonin
%A N. D. Tyannikova
%T Cox model validity checking for several progressively censored samples
%J Matematičeskoe modelirovanie i čislennye metody
%D 2017
%P 102-117
%N 13
%U http://geodesic.mathdoc.fr/item/MMCM_2017_13_a6/
%G ru
%F MMCM_2017_13_a6
V. I. Timonin; N. D. Tyannikova. Cox model validity checking for several progressively censored samples. Matematičeskoe modelirovanie i čislennye metody, no. 13 (2017), pp. 102-117. http://geodesic.mathdoc.fr/item/MMCM_2017_13_a6/

[1] Gnedenko B.V., Belyaev Yu.K., Solovev A.D., Mathematical methods in reliability theory. The main characteristics of reliability and their statistical analysis, Librokom Publ., Moscow, 2013, 584 pp. | MR

[2] Sadykhov G.S., Krapotkin V.G., Kazakova O.I., Mathematical Modeling and Computational Methods, 2014, no. 1, 82–98

[3] Zarubin V.S., Kuvyrkin G.N., Mathematical Modeling and Computational Methods, 2014, no. 1, 5–17

[4] Kiefer J., “K-sample analogues of the Kolmogorov-Smirnov and Cramer-V”, mises tests. The Annals of Mathematical statistics, 30:2 (1959), 420–447 | DOI | MR | Zbl

[5] Gihman I.I., Theory of Probability and its Applications, 1957, no. 2, 380–384 | MR

[6] Timonin V.I., Ermolaeva M.A., Electromagnetic Waves and Electronic Systems, 2011, no. 11, 6–11

[7] Timonin V.I., Tyannikova N.D., Physical Bases of Instrumentation, 5 (2016), 80–87 | DOI

[8] Balakrishnan N., Cramer E., The art of progressive censoring, Springer, Applications to reliability and quality. New York, 2014, 645 pp. | MR | Zbl

[9] Bagdonavicius V., Kruopis J., Nikulin M.S., Nonparametric tests for censored data, Wiley, London, 2011, 233 pp. | MR

[10] Ng N., Balakrishnan N., “Precedence-type test based on Kaplan-Meier estimator of cumulative distribution function”, Journal of Statistical Planning and Inference, 140:8 (2010), 2295–2311 | DOI | MR | Zbl

[11] Timonin V.I., Tyannikova N.D., Herald of Bauman Moscow State Technical University. Series Natural Sciences, 2015, no. 6, 68–84

[12] Bordes L., “Non-parametric estimation under progressive censoring”, Journal of Statistical Planning and Inference, 2004, no. 119, 171–189 | DOI | MR | Zbl

[13] Bolshev L.N., Smirnov N.V., Tables of mathematical statistics, Nauka Publ., Moscow, 1983, 416 pp. | MR

[14] Tyannikova N.D., Timonin V.I., Science and Education, 2014, no. 11

[15] Timonin V.I., Tyannikova N.D., Mathematical Modeling and Computational Methods, 2015, no. 7, 89–100