“Mixed” probabilistic models of bilateral military operations of numerous groups
Matematičeskoe modelirovanie i čislennye metody, no. 13 (2017), pp. 91-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The purpose of this work was to develop "mixed" probabilistic models of bilateral military operations according to the theory of continuous Markov processes. In our research we obtained calculation formulas for estimating the main combat indices of groups small in number. Moreover, we developed a numerical algorithm to calculate the main combat indices of numerous groupings and made a comparison with the results of combat simulation using a deterministic model of two-way combat operations, the model being developed according to themean-value method dynamics. Findings of the research show that the correlation of the forces of the opposing sides, rather than their initial numbers, affects the errors in the mean-value method dynamics.
Keywords: continuous Markov process, models of bilateral military operations, combat units, effective rate of fire, force ratio parameter.
@article{MMCM_2017_13_a5,
     author = {V. U. Chuev and I. V. Dubogray and L. N. Dyakova},
     title = {{\textquotedblleft}Mixed{\textquotedblright} probabilistic models of bilateral military operations of numerous groups},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {91--101},
     year = {2017},
     number = {13},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2017_13_a5/}
}
TY  - JOUR
AU  - V. U. Chuev
AU  - I. V. Dubogray
AU  - L. N. Dyakova
TI  - “Mixed” probabilistic models of bilateral military operations of numerous groups
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2017
SP  - 91
EP  - 101
IS  - 13
UR  - http://geodesic.mathdoc.fr/item/MMCM_2017_13_a5/
LA  - ru
ID  - MMCM_2017_13_a5
ER  - 
%0 Journal Article
%A V. U. Chuev
%A I. V. Dubogray
%A L. N. Dyakova
%T “Mixed” probabilistic models of bilateral military operations of numerous groups
%J Matematičeskoe modelirovanie i čislennye metody
%D 2017
%P 91-101
%N 13
%U http://geodesic.mathdoc.fr/item/MMCM_2017_13_a5/
%G ru
%F MMCM_2017_13_a5
V. U. Chuev; I. V. Dubogray; L. N. Dyakova. “Mixed” probabilistic models of bilateral military operations of numerous groups. Matematičeskoe modelirovanie i čislennye metody, no. 13 (2017), pp. 91-101. http://geodesic.mathdoc.fr/item/MMCM_2017_13_a5/

[1] Aleksandrov A.A., Dimitrienko Yu.I., Mathematical Modeling and Computational Methods, 2014, no. 1, 3–4

[2] Venttsel E.S., Research operations: tasks, principles and methodology, URSS Publ., Moscow, 2007, 208 pp. | MR

[3] Chuev Yu.V., Investigation of military operations, Voenizdat Publ., Moscow, 1970, 270 pp.

[4] Tkachenko P.N., Mathematical models of military operations, Sovetskoe radio Publ., Moscow, 1969, 240 pp.

[5] Dubogray I.V., Dyakova L.N., Chuev V.Yu., Engineering Journal: Science and Innovation, 2013, no. 7

[6] Lanchester F., Aircraft in Warfare: the Dawn of the Fourth Arm, Constable and Co, London, 1916, 243 pp. | Zbl

[7] Taylor J.G., “Dependence of the parity-condition parameter on the combatintensity parameter for Lanchester-type equations of modern warfare”, Operations-Research-Spectrum, 1:3 (1980), 199–205 | DOI | Zbl

[8] Chen X., Jing Y., Li C., Li M., “Warfare command stratagem analysis for winning based on Lanchester attrition models”, Journal of Science and Systems Engineering, 21:1 (2012), 94–105 | DOI | MR

[9] Dubogray I.V., Chuev V.Yu., Scientific edition of Bauman MSTU Science and Education, 2013, no. 10, 109–122

[10] Chuev V.Yu., Dubogray I.V., Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2015, no. 2, 53–62

[11] Jaswall N.K., Military operations research: quantitative decision making, Kluwer Academic Publishers, Boston, 1997, 388 pp. | MR

[12] Taylor J.G., Force-on-force attrition modeling, Military Applications Section of Operations Research Society of America, 1980, 320 pp.

[13] Shamahan L., Dynamics of Model Battles, Physics Department, New York, 2005, 43 pp.

[14] Winston W.L., Operations Research: Applications and Algorithms, Duxbury Press, Belmont, 2001, 128 pp. | MR

[15] Hillier F.S., Lieberman G.J., Introduction to operations research, MeGrew-Hill, New York, 2005, 998 pp. | MR

[16] Alekseev O.G., Anisimov V.G., Anisimov E.G., Markov's combat models, the USSR Ministry of Defense, Moscow, 1985, 85 pp.

[17] Chuev V.Yu., “Veroyatnostnaya model boya mnogochislennykh gruppirovok”, Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki, 2011, 223–232

[18] Chuev V.Yu., Dubogray I.V., Mathematical Modeling and Computational Methods, 2016, no. 1, 89–104

[19] Pashkov N.Yu., Strogalev V.P., Chuev V.Yu., Defense technology, 2000, no. 9–10, 19–21

[20] Chuev V.Yu., Dubogray I.V., Dynamics models of the average bilateral military operations of numerous groupings, LAP LAMBERT Academic Publishing, Saarbryukken, 2014, 72 pp.

[21] Venttsel E.S., Ovcharov L.A., The theory of stochastic processes and its engineering applications, KnoRus, Moscow, 2016, 448 pp. | MR

[22] Venttsel E.S., Probability Theory, KnoRus, Moscow, 2016, 658 pp.