Numerical simulation of the point pulse source impact in a liquid on the ice cover
Matematičeskoe modelirovanie i čislennye metody, no. 13 (2017), pp. 78-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The research examines the planar and three-dimensional problems of an ice cover perturbed by a point pulse source localized in the depth of an infinitely deep liquid. We studied the ice cover of different thickness and carried out numerical study of its perturbations by sources located at different depths. The main attention is paid to the ice cover perturbations that arise directly above the source.
Keywords: ice-covered liquid
Mots-clés : point source, ice cover perturbations.
@article{MMCM_2017_13_a4,
     author = {A. S. Savin and N. E. Gorlova and P. A. Strunin},
     title = {Numerical simulation of the point pulse source impact in a liquid on the ice cover},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {78--90},
     year = {2017},
     number = {13},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2017_13_a4/}
}
TY  - JOUR
AU  - A. S. Savin
AU  - N. E. Gorlova
AU  - P. A. Strunin
TI  - Numerical simulation of the point pulse source impact in a liquid on the ice cover
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2017
SP  - 78
EP  - 90
IS  - 13
UR  - http://geodesic.mathdoc.fr/item/MMCM_2017_13_a4/
LA  - ru
ID  - MMCM_2017_13_a4
ER  - 
%0 Journal Article
%A A. S. Savin
%A N. E. Gorlova
%A P. A. Strunin
%T Numerical simulation of the point pulse source impact in a liquid on the ice cover
%J Matematičeskoe modelirovanie i čislennye metody
%D 2017
%P 78-90
%N 13
%U http://geodesic.mathdoc.fr/item/MMCM_2017_13_a4/
%G ru
%F MMCM_2017_13_a4
A. S. Savin; N. E. Gorlova; P. A. Strunin. Numerical simulation of the point pulse source impact in a liquid on the ice cover. Matematičeskoe modelirovanie i čislennye metody, no. 13 (2017), pp. 78-90. http://geodesic.mathdoc.fr/item/MMCM_2017_13_a4/

[1] Ilichev A.T., Solitary waves in hydromechanical models, Fizmatlit Publ., Moscow, 2003, 256 pp.

[2] Lamb G., Hydrodynamics, Gostekhizdat Publ., Moscow, Leningrad, 1947, 928 pp.

[3] Kochin N.E., Kibel I.A., Roze N.V., OGIZ Publ., Moscow, 1948, 535 pp.

[4] Kochin N.E., O volnovom soprotivlenii i pod'emnoi sile pogruzhennykh v zhidkost tel, Izd-vo AN SSSR, Moskva, Leningrad, 1949, 182 pp.

[5] Keldysh M.V., Lavrentev M.A., O dvizhenii kryla pod poverkhnostyu tyazheloy zhidkosti, Nauka Publ., Moscow, 1985, 151 pp.

[6] Keldysh M.V., Nauka Publ., Moscow, 1985, 103 pp.

[7] Sretenskiy L.N., Theory of wave motions of a fluid, Nauka Publ., Moscow, 1977, 815 pp.

[8] Milne-Thompson L.M., Mir Publ., Moscow, 1964, 660 pp.

[9] Chowdhury R.G., Mandal B.N., “Motion due to fundamental singularities in finite depth water with an elastic solid cover”, Fluid Dynamics Research, 38:4 (2006), 224–240 | DOI | MR | Zbl

[10] Lu D.Q., Dai S.Q., “Generation of transient waves by impulsive disturbances in an inviscid fluid with an ice-cover”, Archive of Applied Mechanics, 76:1–2 (2006), 49–63 | Zbl

[11] Lu D.Q., Dai S.Q., “Flexural – and capillary – gravity waves due to fundamental singularities in an inviscid fluid of finite depth”, International Journal Engineering Science, 46:11 (2008), 1183–1193 | DOI | MR | Zbl

[12] Savin A.A., Savin A.S., Fluid Dynamics. A journal of Russian Academy of Sciences, 2012, no. 2, 3–10 | Zbl

[13] Ilichev A.T., Savin A.A., Savin A.S., “Ustanovlenie volny na ledyanom pokrove nad dvizhuschimsya v zhidkosti dipolem”, Doklady Akademii nauk, 444:2 (2012), 156–159 | MR

[14] Savin A.A., Savin A.S., Fluid Dynamics. A journal of Russian Academy of Science, 2013, no. 3, 24–30 | Zbl

[15] Savin A.A., Savin A.S., Fluid Dynamics. A journal of Russian Academy of Science, 2015, no. 5, 16–23 | Zbl

[16] Dimitrienko Yu.I., Gubareva E.A., Yurin Yu.V., Mathematical Modeling and Computational Methods, 2014, no. 4, 18–36

[17] Dimitrienko Yu.I., Yurin Yu.V., Mathematical Modeling and Computational Methods, 2015, no. 3, 101–118