Incompressible layered composites with finite deformations on the basis of the asymptotic averaging method
Matematičeskoe modelirovanie i čislennye metody, no. 13 (2017), pp. 32-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article considers the modeling results of incompressible layered composites with finite strains deformation according to the individual layers characteristics. The article proposes an asymptotic averaging method version for layered nonlinearly elastic incompressible composites with finite deformations and periodic structure. We are using a universal representation of the defining relations for incompressible composite layers, proposed by Yu.I. Dimitrienko, which allows us to simulate simultaneously for a complex of various nonlinear elastic media models characterizedby the choice of a pair of energy tensors. We proved that if all composite layers are incompressible, the composite as a whole is also an incompressible, but anisotropic, medium. The article considers the problem of laminated plate uniaxial stretching from incompressible layers with finite deformations. Using the developed method, we calculated the effective deformation diagrams connecting the averaged Piola — Kirchhoff stress tensors components and the strain gradient, as well as the stress distribution in the composite layers. The developed method for calculating effective deformation diagrams and stresses in composite layers can be used in the design of elastomeric composites with specified properties.
Keywords: layered composites, finite deformations, asymptotic averaging method, Piola — Kirchhoff stress tensor, universal models of determining relations, deformation diagrams.
Mots-clés : incompressible media, strain gradient
@article{MMCM_2017_13_a2,
     author = {Yu. I. Dimitrienko and E. A. Gubareva and D. Yu. Kolzhanova and S. B. Karimov},
     title = {Incompressible layered composites with finite deformations on the basis of the asymptotic averaging method},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {32--54},
     year = {2017},
     number = {13},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2017_13_a2/}
}
TY  - JOUR
AU  - Yu. I. Dimitrienko
AU  - E. A. Gubareva
AU  - D. Yu. Kolzhanova
AU  - S. B. Karimov
TI  - Incompressible layered composites with finite deformations on the basis of the asymptotic averaging method
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2017
SP  - 32
EP  - 54
IS  - 13
UR  - http://geodesic.mathdoc.fr/item/MMCM_2017_13_a2/
LA  - ru
ID  - MMCM_2017_13_a2
ER  - 
%0 Journal Article
%A Yu. I. Dimitrienko
%A E. A. Gubareva
%A D. Yu. Kolzhanova
%A S. B. Karimov
%T Incompressible layered composites with finite deformations on the basis of the asymptotic averaging method
%J Matematičeskoe modelirovanie i čislennye metody
%D 2017
%P 32-54
%N 13
%U http://geodesic.mathdoc.fr/item/MMCM_2017_13_a2/
%G ru
%F MMCM_2017_13_a2
Yu. I. Dimitrienko; E. A. Gubareva; D. Yu. Kolzhanova; S. B. Karimov. Incompressible layered composites with finite deformations on the basis of the asymptotic averaging method. Matematičeskoe modelirovanie i čislennye metody, no. 13 (2017), pp. 32-54. http://geodesic.mathdoc.fr/item/MMCM_2017_13_a2/

[1] Christensen R.M., Mechanics of composite materials, John Wiley Sons, New York, 1979, 324 pp.

[2] Bakhvalov N.S., Panasenko G.P., Averaging processes in periodic media, Nauka Publ., Moscow, 1984, 356 pp. | MR

[3] Pobedrya B.E., Mechanics of composite materials, Lomonosov Moscow State University Publ., Moscow, 1984, 336 pp.

[4] Dimitrienko Yu.I., “A Structural thermos-mechanics model of textile composite materials at high temperatures”, Composites Science and Technology, 59:7 (1999), 1041–1053 | DOI | MR

[5] Dimitrienko Yu.I., Gubareva E.A., Sborschikov S.V., Mathematical Modeling and Computational Methods, 2014, no. 2, 28–48

[6] Dimitrienko Yu.I., Kashkarov A.I., “Vestnik MGTU im”, N.E. Baumana. Ser. Estestvennye nauki. Herald of Bauman Moscow State Technical University. Series Natural Sciences, 2002, no. 2, 95–108

[7] Dimitrienko Yu.I., Kashkarov A.I., Makashov A.A., “Konechno-elementnyi raschet effektivnykh uprugoplasticheskikh kharakteristik kompozitov na osnove metoda asimptoticheskogo osredneniya”, Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki, 2007, no. 1, 102–116

[8] Dimitrienko Yu.I., Gubareva E.A., Kolzhanova D.Yu., Engineering Journal: Science and Innovation, 2015, no. 5

[9] Dimitrienko Yu.I., Proceedings of Higher Educational Institutions. Machine Building, 2015, no. 11, 68–77

[10] Yang Q., Xu F., “Numerical modeling of nonlinear deformation of polymer composites based on hyperelastic constitutive law”, Frontiers of Mechanical Engineering in China, 4:3 (2009), 284–288

[11] Aboudi J., “Finite strain micromechanical modeling of multiphase composites”, International Journal Multiscale Computational Engineering, 6:5 (2008), 411–434 | DOI

[12] Zhang B., Yu X., Gu B., “Micromechanical modeling of large deformation in sepiolite reinforced rubber sealing composites under transverse tension”, Polymer Composites, 2015, no. 38, 381–388

[13] Ge Q., Luo X., Iversen C.B., Nejad H.B., Mather P.T., Dunn M.L., Qi H.J., “A finite deformation thermomechanical constitutive model for triple shape polymeric composites based on dual thermal transitions”, International Journal of Solids and Structures, 51 (2014), 2777–2790 | DOI

[14] Dimitrienko Yu.I., BMSTU Publ., Moscow, 2013, 624 pp.

[15] Dimitrienko Yu.I., Dashtiev I.Z., “Vestnik MGTU im”, Herald of Bauman Moscow State Technical University. Series. Natural Sciences, 2001, no. 1, 21–41

[16] Dimitrienko Yu.I., Nonlinear mechanics of continuous medium, Fizmatlit Publ., Moscow, 2009, 610 pp.

[17] Dimitrienko Yu.I., Yakovlev N.O., Erasov V.S., Fedonyuk N.N., Sborschikov S.V., Gubareva E.A., Krylov V.D., Grigorev M.M., Prozorovsky A.A., Composites and Nanostructures, 6:1 (2014), 32–48 | MR

[18] Dimitrienko Yu.I., Gubareva E.A., Sborschikov S.V., Mathematical Modeling and Computational Methods, 2014, no. 1, 36–57

[19] Dimitrienko Yu.I., Yakovlev D.O., Mathematical modeling and Computational Methods, 20:2 (2014), 260–282