A model of multidimensional deformable continuum for forecasting the dynamics of large scale array of individual data
Matematičeskoe modelirovanie i čislennye metody, no. 9 (2016), pp. 105-122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article considers the concept of applying the multidimensional continuum model to one of the main problems emerging in the theory of large scale data array treatment i.e. forecasting the dynamics of data cluster change. The concept is based on the model of multidimensional continua in spaces of high dimensionality (more than three) earlier developed by the authors. The model includes the integral conservation laws, which are reformulated for informational data clusters, as well as the model of motion kinematics and cluster deformation. The model of deformable multidimensional cluster is developed. The movement of the cluster in multidimensional data space includes translational and rotational motion and uniform tension-compression strain. The system of differential tensor equations describing the dynamics of the deformable multivariate cluster motion over time is formulated. A numerical algorithm for solving the system of differential equations for the ellipsoidal model of multidimensional cluster is worked out. An example of the developed model application for predicting the dynamics of economic data (data on goods purchases in a large supermarket) is considered. The results of forecasting the data on purchases of different consumer groups are shown.
Keywords: Multidimensional continua, large scale data array, multidimensional space of features, deformable cluster, conservation laws for data cluster, forecasting the dynamics of data change, cluster rotation tensor.
Mots-clés : lagrangean coordinates
@article{MMCM_2016_9_a6,
     author = {Yu. I. Dimitrienko and O. Yu. Dimitrienko},
     title = {A model of multidimensional deformable continuum for forecasting the dynamics of large scale array of individual data},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {105--122},
     year = {2016},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2016_9_a6/}
}
TY  - JOUR
AU  - Yu. I. Dimitrienko
AU  - O. Yu. Dimitrienko
TI  - A model of multidimensional deformable continuum for forecasting the dynamics of large scale array of individual data
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2016
SP  - 105
EP  - 122
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/MMCM_2016_9_a6/
LA  - ru
ID  - MMCM_2016_9_a6
ER  - 
%0 Journal Article
%A Yu. I. Dimitrienko
%A O. Yu. Dimitrienko
%T A model of multidimensional deformable continuum for forecasting the dynamics of large scale array of individual data
%J Matematičeskoe modelirovanie i čislennye metody
%D 2016
%P 105-122
%N 9
%U http://geodesic.mathdoc.fr/item/MMCM_2016_9_a6/
%G ru
%F MMCM_2016_9_a6
Yu. I. Dimitrienko; O. Yu. Dimitrienko. A model of multidimensional deformable continuum for forecasting the dynamics of large scale array of individual data. Matematičeskoe modelirovanie i čislennye metody, no. 9 (2016), pp. 105-122. http://geodesic.mathdoc.fr/item/MMCM_2016_9_a6/

[1] Shipunov A.B., Baldin E.M., Volkova P.A., Korobeinikov A.I., Nazarova S.A., Petrov S.V., Sufiyanov V.G., “Visual Statistics”, DMK Press Publ., 2014

[2] Demin I.S., Clustering as a Tool of Intellectual Data Analysis, 1S-Publishing,, Moscow, 2011, 103 pp.

[3] Demin I.S., Clustering Uniformly Distributed Sets by Methods of Neural Networks, Finansovaya akademiya Publ., Moscow, 2007, 38 pp.

[4] Oreshkov V.I., Creative Economics, 2011, no. 12, 84–89

[5] Zhuravlev Yu.I., Ryazanov V.V., Senko O.V., “Phazis” Publ., Moscow, 2006, 176 pp.

[6] Aivazyan S.A., Bukhshtaber V.M., Enukov I.S., Meshalkin L.D., Applied Statistics. Classification and Dimension Reduction, Finansy i statistika Publ., Moscow, 1989, 607 pp.

[7] Barsegyan A.A., Kupriyanov M.S., Stepanenko V.V., Kholod I.I., Methods and Models of Data Analysis: OLAP and Data Mining, BKhV-Peterburg Publ., St. Petersburg, 2004, 336 pp.

[8] Han J., Kamber M., “Data Mining: Concepts and Techniques”, Morgan Kaufmann Publishers, 2001, 744

[9] Konar A., Artificial intelligence and soft computing: behavioral and cognitive modeling of the human brain, CRC Press LLC, Florida, 2000, 784 pp.

[10] Mitra S., Acharya T., Data Mining, Soft Computing and Bioinformatics. John Wiley Sons Inc., Hoboken,, 2003, 401 pp.

[11] Dimitrienko O.Yu., Information Technologies, 2007, no. 11, 74–80

[12] Dimitrienko Yu.I., Dimitrienko O.Yu., Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2010, no. 3, 56–71 | MR

[13] Dimitrienko Yu.I., Dimitrienko O.Yu., Doklady Mathematics, 435:4 (2010), 466–469 | MR | Zbl

[14] Dimitrienko Yu.I., Dimitrienko O.Yu., Information Technologies, 2010, no. 8, 54–62

[15] Dimitrienko Yu.I., Dimitrienko O.Y., “Cluster-Continuum Modeling of Economic processes”, Doklady Mathematics, 82:3 (2010), 982–985 | DOI | MR | Zbl

[16] Dimitrienko Yu.I., Dimitrienko O.Yu., Doklady Mathematics, 440:2 (2011), 168–171 | Zbl

[17] Dimitrienko Yu.I., Dimitrienko O.Yu., Information Technologies, 2012, no. 1, 55–61

[18] Dimitrienko Yu.I., Nonlinear Continuum Mechanics, Fizmatlit Publ., Moscow, 2009, 624 pp.

[19] Dimitrienko Yu.I., BMSTU Publ., Moscow, 2011, 367 pp.

[20] Dimitrienko Yu.I., Tensor Calculus, Moscow, 2001, 575 pp.

[21] Zhileikin M.M., Sarach E.B., Mathematical Modeling and Computational Methods, 2015, no. 3, 17–40

[22] Zinovyev A.Yu., Visualization of Multidimensional Data, Krasnoyarsk State Technical University Publ., Krasnoyarsk, 2000, 180 pp.