Mots-clés : torsional vibrations, rotation
@article{MMCM_2016_9_a2,
author = {Kh. Kh. Khudoynazarov and A. Abdirashidov and Sh. M. Burkutboyev},
title = {Torsional vibrations of the viscoelastic round bar rotating with the constant angular velocity},
journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
pages = {38--51},
year = {2016},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMCM_2016_9_a2/}
}
TY - JOUR AU - Kh. Kh. Khudoynazarov AU - A. Abdirashidov AU - Sh. M. Burkutboyev TI - Torsional vibrations of the viscoelastic round bar rotating with the constant angular velocity JO - Matematičeskoe modelirovanie i čislennye metody PY - 2016 SP - 38 EP - 51 IS - 9 UR - http://geodesic.mathdoc.fr/item/MMCM_2016_9_a2/ LA - ru ID - MMCM_2016_9_a2 ER -
%0 Journal Article %A Kh. Kh. Khudoynazarov %A A. Abdirashidov %A Sh. M. Burkutboyev %T Torsional vibrations of the viscoelastic round bar rotating with the constant angular velocity %J Matematičeskoe modelirovanie i čislennye metody %D 2016 %P 38-51 %N 9 %U http://geodesic.mathdoc.fr/item/MMCM_2016_9_a2/ %G ru %F MMCM_2016_9_a2
Kh. Kh. Khudoynazarov; A. Abdirashidov; Sh. M. Burkutboyev. Torsional vibrations of the viscoelastic round bar rotating with the constant angular velocity. Matematičeskoe modelirovanie i čislennye metody, no. 9 (2016), pp. 38-51. http://geodesic.mathdoc.fr/item/MMCM_2016_9_a2/
[1] Bauer H.F., “Vibration of a rotating uniform beam, part I: Orientation in the axis of rotation”, Journal of Sound and Vibration, 72:2 (1980), 177–189 | DOI | Zbl
[2] Munitsyn A.I., Mathematical and Computer Modeling of Machines and Systems, 3 (2008), 64–67
[3] Gong S.W., Lam K.Y., “Rotating multilayered cylindrical shells to impact loading”, AIAA Journal, 41:1 (2002)
[4] Ng T.Y., Lam K.Y., “Vibration and critical speed of a rotating cylindrical shell subjected to axial loading”, Applied Acoustics, 1999, no. 56, 273–282 | Zbl
[5] Rand O., Stavsky Y., International Journal Solids and Structures, 28:7 (1991), 831–843
[6] Badalov F.B., Abdukarimov A., Xudoyarov B.A., Computing Technologies, 12:4 (2007), 17–26
[7] Marynowski K., “Non-linear dynamic analysis of an axially moving viscoelastic beam”, Journal of theoretical and applied mechanics, 40:2 (2002), 465–481
[8] Gorokhova I.V., Mathematical notes, 89:6 (2011), 825–832 | DOI | MR | Zbl
[9] Dimitriyenko Yu.I., Gubareva E.A., Sborschikov S.V., Mathematical Modeling and Computational Methods, 2014, no. 2, 28–48
[10] Filippov I.G., Cheban V.G., Mathematical theory of vibrations of elastic and viscoelastic plates and bars, Shtiintsa Publ., Kishinev, 1988, 190 pp. | MR
[11] Khudoynazarov Kh.Kh., Non-stationary interaction of cylindrical shells and bars with deformable medium, Abu Ali ibn Sino Publ., Tashkent, 2003, 326 pp.
[12] Guz A.N., Kubenko V.D., Cherevko M.A., Diffraction of elastic waves, Naukova Dumka Publ., Kiyev, 1973, 308 pp. | MR
[13] Sneddon I., Fourier transforms, Inostrannaya Literatura Publ., Moscow, 1955, 667 pp.
[14] Koltunov M.A., Creep and relaxation, Visshaya Shkola Publ., Moscow, 1976, 276 pp.
[15] Formalyov V.F., Reviznikov D.L., Numerical methods, Fizmatlit Publ., Moscow, 2004, 400 pp.