Torsional vibrations of the viscoelastic round bar rotating with the constant angular velocity
Matematičeskoe modelirovanie i čislennye metody, no. 9 (2016), pp. 38-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The purpose of this article is to deduce general and approximate equations for the torsional vibration of the viscoelastic round bar rotating around the symmetry axis with the constant angular velocity. Within the research we develop the algorithm allowing to define the bar deflected mode. The received approximate equations enabled to numerically solve the problem of the bar torsional vibrations. Moreover, we carry out a comparative analysis of the results obtained for exponential and weakly singular kernels of the viscoelastic operator. As a result, we estimate the rotation influence on the bar vibrations
Keywords: Bar, displacement, stress, angular velocity, viscoelasticity.
Mots-clés : torsional vibrations, rotation
@article{MMCM_2016_9_a2,
     author = {Kh. Kh. Khudoynazarov and A. Abdirashidov and Sh. M. Burkutboyev},
     title = {Torsional vibrations of the viscoelastic round bar rotating with the constant angular velocity},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {38--51},
     year = {2016},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2016_9_a2/}
}
TY  - JOUR
AU  - Kh. Kh. Khudoynazarov
AU  - A. Abdirashidov
AU  - Sh. M. Burkutboyev
TI  - Torsional vibrations of the viscoelastic round bar rotating with the constant angular velocity
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2016
SP  - 38
EP  - 51
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/MMCM_2016_9_a2/
LA  - ru
ID  - MMCM_2016_9_a2
ER  - 
%0 Journal Article
%A Kh. Kh. Khudoynazarov
%A A. Abdirashidov
%A Sh. M. Burkutboyev
%T Torsional vibrations of the viscoelastic round bar rotating with the constant angular velocity
%J Matematičeskoe modelirovanie i čislennye metody
%D 2016
%P 38-51
%N 9
%U http://geodesic.mathdoc.fr/item/MMCM_2016_9_a2/
%G ru
%F MMCM_2016_9_a2
Kh. Kh. Khudoynazarov; A. Abdirashidov; Sh. M. Burkutboyev. Torsional vibrations of the viscoelastic round bar rotating with the constant angular velocity. Matematičeskoe modelirovanie i čislennye metody, no. 9 (2016), pp. 38-51. http://geodesic.mathdoc.fr/item/MMCM_2016_9_a2/

[1] Bauer H.F., “Vibration of a rotating uniform beam, part I: Orientation in the axis of rotation”, Journal of Sound and Vibration, 72:2 (1980), 177–189 | DOI | Zbl

[2] Munitsyn A.I., Mathematical and Computer Modeling of Machines and Systems, 3 (2008), 64–67

[3] Gong S.W., Lam K.Y., “Rotating multilayered cylindrical shells to impact loading”, AIAA Journal, 41:1 (2002)

[4] Ng T.Y., Lam K.Y., “Vibration and critical speed of a rotating cylindrical shell subjected to axial loading”, Applied Acoustics, 1999, no. 56, 273–282 | Zbl

[5] Rand O., Stavsky Y., International Journal Solids and Structures, 28:7 (1991), 831–843

[6] Badalov F.B., Abdukarimov A., Xudoyarov B.A., Computing Technologies, 12:4 (2007), 17–26

[7] Marynowski K., “Non-linear dynamic analysis of an axially moving viscoelastic beam”, Journal of theoretical and applied mechanics, 40:2 (2002), 465–481

[8] Gorokhova I.V., Mathematical notes, 89:6 (2011), 825–832 | DOI | MR | Zbl

[9] Dimitriyenko Yu.I., Gubareva E.A., Sborschikov S.V., Mathematical Modeling and Computational Methods, 2014, no. 2, 28–48

[10] Filippov I.G., Cheban V.G., Mathematical theory of vibrations of elastic and viscoelastic plates and bars, Shtiintsa Publ., Kishinev, 1988, 190 pp. | MR

[11] Khudoynazarov Kh.Kh., Non-stationary interaction of cylindrical shells and bars with deformable medium, Abu Ali ibn Sino Publ., Tashkent, 2003, 326 pp.

[12] Guz A.N., Kubenko V.D., Cherevko M.A., Diffraction of elastic waves, Naukova Dumka Publ., Kiyev, 1973, 308 pp. | MR

[13] Sneddon I., Fourier transforms, Inostrannaya Literatura Publ., Moscow, 1955, 667 pp.

[14] Koltunov M.A., Creep and relaxation, Visshaya Shkola Publ., Moscow, 1976, 276 pp.

[15] Formalyov V.F., Reviznikov D.L., Numerical methods, Fizmatlit Publ., Moscow, 2004, 400 pp.