@article{MMCM_2016_9_a1,
author = {A. E. Belkin and V. K. Semyonov},
title = {Mathematical modeling of massive tire stationary rolling on the chassis dynamometer with regard to energy dissipation in rubber},
journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
pages = {17--37},
year = {2016},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMCM_2016_9_a1/}
}
TY - JOUR AU - A. E. Belkin AU - V. K. Semyonov TI - Mathematical modeling of massive tire stationary rolling on the chassis dynamometer with regard to energy dissipation in rubber JO - Matematičeskoe modelirovanie i čislennye metody PY - 2016 SP - 17 EP - 37 IS - 9 UR - http://geodesic.mathdoc.fr/item/MMCM_2016_9_a1/ LA - ru ID - MMCM_2016_9_a1 ER -
%0 Journal Article %A A. E. Belkin %A V. K. Semyonov %T Mathematical modeling of massive tire stationary rolling on the chassis dynamometer with regard to energy dissipation in rubber %J Matematičeskoe modelirovanie i čislennye metody %D 2016 %P 17-37 %N 9 %U http://geodesic.mathdoc.fr/item/MMCM_2016_9_a1/ %G ru %F MMCM_2016_9_a1
A. E. Belkin; V. K. Semyonov. Mathematical modeling of massive tire stationary rolling on the chassis dynamometer with regard to energy dissipation in rubber. Matematičeskoe modelirovanie i čislennye metody, no. 9 (2016), pp. 17-37. http://geodesic.mathdoc.fr/item/MMCM_2016_9_a1/
[1] Bapat C.N., Batra R.C., “Finite plane strain deformations of nonlinear viscoelastic rubber-covered rolls”, International journal for numerical methods in engineering, 20 (1984), 1911–1927 | DOI | Zbl
[2] Oden J.T., Lin T.L., “On the general rolling contact problem for finite deformations of a viscoelastic cylinder”, Computer methods in applied mechanics and engineering, 57:3 (1986), 297–367 | DOI | MR | Zbl
[3] Oden J.T., Lin T.L., Bass J.M., “A finite element analysis of the general rolling contact problem for a viscoelastic rubber cylinder”, Tire science and technology, 16:1 (1988), 18–43 | DOI | MR
[4] Le Tallec P., Rahier C., “Numerical models of steady rolling for non-linear viscoelastic structures in finite deformations”, International journal for numerical methods in engineering, 37 (1994), 1159–1186 | DOI | Zbl
[5] Nackenhorst U., “The ALE-formulation of bodies in rolling contact: theoretical foundations and finite element approach”, Computer methods in applied mechanics and engineering, 193:39 (2004), 4299–4322 | DOI | MR | Zbl
[6] Wriggers P., “Finite element algorithms for contact problems”, Archives of computational methods in engineering, 2:4 (1995), 1-49 | DOI | MR
[7] Guangdi Hu, Wriggers P., “On the adaptive finite element method of steady-state rolling contact for hyperelasticity in finite deformations”, Computer methods in applied mechanics and engineering, 191:13 (2002), 1333–1348 | MR | Zbl
[8] Bergstr J.S., Boyce M.C., “Constitutive modeling of the large strain timedependent behavior of elastomers”, J. Mech. Phys. Solids., 46 (1998), 931–954 | DOI | Zbl
[9] Bergstr J.S., Boyce M.C., “Mechanical behavior of particle filled elastomers”, Rubber Chem. Technol., 72 (1999), 633–656 | DOI
[10] Cemenov V.K., Belkin A.E., “Matematicheskaya model vyazkouprugogo povedeniya reziny pri tsiklicheskom nagruzhenii”, Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie, 2014, no. 2, 46–51
[11] Belkin A.E., Dashtiyev I.Z., Lonkin B.V., Mathematical Modeling and Computational Methods, 2014, no. 3, 39–54
[12] Semyonov V.K , Belkin A.E., Veselov A.V., Engineering Herald, 2014, no. 12, 151–160