Mots-clés : determination coefficient.
@article{MMCM_2016_10_a6,
author = {M. P. Bazilevskiy},
title = {Analytical dependences between the determination coefficients and the ratio of error variances of the test items in {Deming} regression model},
journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
pages = {104--116},
year = {2016},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMCM_2016_10_a6/}
}
TY - JOUR AU - M. P. Bazilevskiy TI - Analytical dependences between the determination coefficients and the ratio of error variances of the test items in Deming regression model JO - Matematičeskoe modelirovanie i čislennye metody PY - 2016 SP - 104 EP - 116 IS - 10 UR - http://geodesic.mathdoc.fr/item/MMCM_2016_10_a6/ LA - ru ID - MMCM_2016_10_a6 ER -
%0 Journal Article %A M. P. Bazilevskiy %T Analytical dependences between the determination coefficients and the ratio of error variances of the test items in Deming regression model %J Matematičeskoe modelirovanie i čislennye metody %D 2016 %P 104-116 %N 10 %U http://geodesic.mathdoc.fr/item/MMCM_2016_10_a6/ %G ru %F MMCM_2016_10_a6
M. P. Bazilevskiy. Analytical dependences between the determination coefficients and the ratio of error variances of the test items in Deming regression model. Matematičeskoe modelirovanie i čislennye metody, no. 10 (2016), pp. 104-116. http://geodesic.mathdoc.fr/item/MMCM_2016_10_a6/
[1] Aivazyan S.A., Prikladnaia statistika, YuNITI-DANA Publ., Moscow, 2001, 432 pp.
[2] Noskov S.I., Technology of the objects with unstable operation and the data uncertainty, Oblinformpechat Publ., Irkutsk, 1996, 321 pp.
[3] Gefan G.D., Econometrics, IrGUPS Publ., Irkutsk, 2005, 84 pp.
[4] Dreiper N., Smit G., Applied regression analysis, Finansy i statistika Publ., Moscow, 1986, 366 pp.
[5] Timofeev V.S., Shchekoldin V.Yu., Timofeeva A.Yu., Informatics and Applications, 7:2 (2013), 60–68
[6] Deming W.E., Statistical adjustment of data, Dover, New York, 2011, 288 pp.
[7] Besalu E., de Julian-Ortiz J., Pogliani L., “Ordinary and orthogonal regressions in QSAR/QSPR and chemistry-related studies”, Match-Communications in Mathematical and in Computer Chemistry, 2010, no. 63, 573–583
[8] Huang L., Rattner A., Liu H., Nathans J., “Tutorial: how to draw the line in biomedical research”, eLife, 2013
[9] Bernard G., Bernadette B., “Measurement methods comparison with errors-invariables regressions”, Chemometrics and Intelligent Laboratory Systems, 134 (2014), 123–139
[10] Dhanoa M.S., Sanderson R., Lopez S., Dijkstra J., Kebreab E., France J., “Regression procedures for relationships between random variables”, Modelling Nutrient Digestion and Utilisation in Farm Animals, 2011, no. 1, 31–39
[11] Shaoji Xu., “A Property of Geometric Mean Regression”, The American Statistician, 68:4 (2014), 277–281
[12] Haeckel R., Wosniok W., Klauke R., “Comparison of ordinary linear regression, orthogonal regression, standardized principal component analysis, Deming and Passing-Bablok approach for method validation in laboratory medicine”, Laboratoriums Medizin, 37:3 (2013), 147–163
[13] Kallner A., “Comprehensive method comparisons: getting more from the data”, Accreditation and Quality Assurance, 19:6 (2014), 451–457
[14] Glaister P., “Least squares revisited”, The Mathematical Gazette, 2001, no. 85, 104–107
[15] Dougerti K., Introduction to econometrics, INFRA-M Publ., Moscow, 2009, 465 pp.