Analytical dependences between the determination coefficients and the ratio of error variances of the test items in Deming regression model
Matematičeskoe modelirovanie i čislennye metody, no. 10 (2016), pp. 104-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article deals with the problem of building regression models, in which all variables have stochastic nature. To solve it, we propose to use the determination coefficient. We obtain analytical dependencies of the determination coefficients from the ratio of error variances of the test items. We set the optimization problem, assuming the maximization of the determination coefficients sum for each Deming regression equation. We give a model example of the numerical processing of Deming regression with its parameters and sign errors which are known.
Keywords: Deming regression model, least square method, error variance
Mots-clés : determination coefficient.
@article{MMCM_2016_10_a6,
     author = {M. P. Bazilevskiy},
     title = {Analytical dependences between the determination coefficients and the ratio of error variances of the test items in {Deming} regression model},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {104--116},
     year = {2016},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2016_10_a6/}
}
TY  - JOUR
AU  - M. P. Bazilevskiy
TI  - Analytical dependences between the determination coefficients and the ratio of error variances of the test items in Deming regression model
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2016
SP  - 104
EP  - 116
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/MMCM_2016_10_a6/
LA  - ru
ID  - MMCM_2016_10_a6
ER  - 
%0 Journal Article
%A M. P. Bazilevskiy
%T Analytical dependences between the determination coefficients and the ratio of error variances of the test items in Deming regression model
%J Matematičeskoe modelirovanie i čislennye metody
%D 2016
%P 104-116
%N 10
%U http://geodesic.mathdoc.fr/item/MMCM_2016_10_a6/
%G ru
%F MMCM_2016_10_a6
M. P. Bazilevskiy. Analytical dependences between the determination coefficients and the ratio of error variances of the test items in Deming regression model. Matematičeskoe modelirovanie i čislennye metody, no. 10 (2016), pp. 104-116. http://geodesic.mathdoc.fr/item/MMCM_2016_10_a6/

[1] Aivazyan S.A., Prikladnaia statistika, YuNITI-DANA Publ., Moscow, 2001, 432 pp.

[2] Noskov S.I., Technology of the objects with unstable operation and the data uncertainty, Oblinformpechat Publ., Irkutsk, 1996, 321 pp.

[3] Gefan G.D., Econometrics, IrGUPS Publ., Irkutsk, 2005, 84 pp.

[4] Dreiper N., Smit G., Applied regression analysis, Finansy i statistika Publ., Moscow, 1986, 366 pp.

[5] Timofeev V.S., Shchekoldin V.Yu., Timofeeva A.Yu., Informatics and Applications, 7:2 (2013), 60–68

[6] Deming W.E., Statistical adjustment of data, Dover, New York, 2011, 288 pp.

[7] Besalu E., de Julian-Ortiz J., Pogliani L., “Ordinary and orthogonal regressions in QSAR/QSPR and chemistry-related studies”, Match-Communications in Mathematical and in Computer Chemistry, 2010, no. 63, 573–583

[8] Huang L., Rattner A., Liu H., Nathans J., “Tutorial: how to draw the line in biomedical research”, eLife, 2013

[9] Bernard G., Bernadette B., “Measurement methods comparison with errors-invariables regressions”, Chemometrics and Intelligent Laboratory Systems, 134 (2014), 123–139

[10] Dhanoa M.S., Sanderson R., Lopez S., Dijkstra J., Kebreab E., France J., “Regression procedures for relationships between random variables”, Modelling Nutrient Digestion and Utilisation in Farm Animals, 2011, no. 1, 31–39

[11] Shaoji Xu., “A Property of Geometric Mean Regression”, The American Statistician, 68:4 (2014), 277–281

[12] Haeckel R., Wosniok W., Klauke R., “Comparison of ordinary linear regression, orthogonal regression, standardized principal component analysis, Deming and Passing-Bablok approach for method validation in laboratory medicine”, Laboratoriums Medizin, 37:3 (2013), 147–163

[13] Kallner A., “Comprehensive method comparisons: getting more from the data”, Accreditation and Quality Assurance, 19:6 (2014), 451–457

[14] Glaister P., “Least squares revisited”, The Mathematical Gazette, 2001, no. 85, 104–107

[15] Dougerti K., Introduction to econometrics, INFRA-M Publ., Moscow, 2009, 465 pp.