Multiscale modeling of elastic-plastic composites with an allowance for fault probability
Matematičeskoe modelirovanie i čislennye metody, no. 10 (2016), pp. 3-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The purpose of this article is to propose a model of deformation of elastic-plastic composite materials with periodic structures with an allowance for fault probability of the composite phases. The model is based on a variant of the deformation theory of plasticity with the active loading. To simulate the effective characteristics of elastic-plastic composites, we applied the method of asymptotic homogenization of periodic structures. For numerical solution of linearized problems on the periodicity cell we offered the finite elements method using SMCM software medium developed at the Scientific-Educational Center of Supercomputer Engineering Modeling and Program Software Development of the Bauman Moscow State Technical University. We provide the research with the examples of numerical computations for dispersion-reinforced metal composites (aluminum matrix filled with SiC particles). Finally, we present the results of numerical modeling of deformation processes, damage accumulation and metal-composite destruction.
Keywords: Numerical modeling, method of asymptotic homogenization, elasticplastic materials, finite elements method, local problems, periodicity cell, aluminum matrix
Mots-clés : composites, composite destruction, sic particles.
@article{MMCM_2016_10_a0,
     author = {Yu. I. Dimitrienko and E. A. Gubareva and S. V. Sborshchikov},
     title = {Multiscale modeling of elastic-plastic composites with an allowance for fault probability},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {3--23},
     year = {2016},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2016_10_a0/}
}
TY  - JOUR
AU  - Yu. I. Dimitrienko
AU  - E. A. Gubareva
AU  - S. V. Sborshchikov
TI  - Multiscale modeling of elastic-plastic composites with an allowance for fault probability
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2016
SP  - 3
EP  - 23
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/MMCM_2016_10_a0/
LA  - ru
ID  - MMCM_2016_10_a0
ER  - 
%0 Journal Article
%A Yu. I. Dimitrienko
%A E. A. Gubareva
%A S. V. Sborshchikov
%T Multiscale modeling of elastic-plastic composites with an allowance for fault probability
%J Matematičeskoe modelirovanie i čislennye metody
%D 2016
%P 3-23
%N 10
%U http://geodesic.mathdoc.fr/item/MMCM_2016_10_a0/
%G ru
%F MMCM_2016_10_a0
Yu. I. Dimitrienko; E. A. Gubareva; S. V. Sborshchikov. Multiscale modeling of elastic-plastic composites with an allowance for fault probability. Matematičeskoe modelirovanie i čislennye metody, no. 10 (2016), pp. 3-23. http://geodesic.mathdoc.fr/item/MMCM_2016_10_a0/

[1] Adams D.F., Uprugoplasticheskoe povedenie kompozitov, Mir Publ., Moscow, 1978, 241 pp.

[2] Kristensen R.M., Introduction to mechanics of composites, Mir Publ., Moscow, 1982, 336 pp.

[3] Vildeman V.E., Sokolkin Yu.V., Tashkinov A.A., Mechanics of inelastic deformation and destruction of composite materials, Nauka Publ., Moscow, 1997, 288 pp.

[4] Nguyen B.N., Bapanapalli S.K., Kunc V., Phelps J.H., Tucker C.L., “Prediction of the Elastic-Plastic Stress”, Strain Response for Injection-Molded Long-Fiber Thermoplastics. Journal of Composite Materials, 43:3 (2009), 217–246

[5] Tarnopolskiy Yu.M., Zhigun I.G., Polyakov V.A., Space-reinforced composite materials, Mashinostroenie Publ., Moscow, 1987, 223 pp.

[6] Bensoussan A., Lions J.L., Papanicolaou G., “Asymptotic analysis for periodic structures”, North-Holland, 1978

[7] Bakhvalov N.S., Panasenko G.P., Process averaging in periodic media, Nauka Publ., Moscow, 1984, 352 pp.

[8] Sanches-Palensiya E., Nonhomogeneous media and vibration theory, Mir Publ., Moscow, 1984, 472 pp.

[9] Pobedrya B.E., Mechanics of composite materials, Lomonosov MSU Publ., Moscow, 1984, 324 pp.

[10] Manevitch L.I., Andrianov I.V., Oshmyan V.G., “Mechanics of Periodically Heterogeneous Structures”, Springer, 2002, 264

[11] Khdir Y.K., Kanit T., Zari F., Nat-Abdelaziz M., “Computational homogenization of elastic-plastic composites”, International Journal of Solids and Structures, 50:18 (2013), 2829–2835

[12] Dimitrienko Yu.I., Kashkarov A.I., Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2002, no. 2, 95–108

[13] Dimitrienko Yu.I., Sborshchikov S.V., Belenovskaya Yu.V., Aniskovich V.A., Perevislov S.N., Science and Education, 2013, no. 11

[14] Dimitrienko Yu.I., Yakovlev N.O., Erasov V.S., Fedonyuk N.N., Sborshchikov S.V., Gubareva E.A., Krylov V.D., Grigoryev M.M., Prozorovskiy A.A., Composites and Nanostructures, 6:1 (2014), 32–48

[15] Dimitrienko Yu.I., Gubareva E.A., Sborshchikov S.V., Fedonyuk N.N., Science and Education, 2014, no. 11

[16] Dimitrienko Yu.I., Gubareva E.A., Sborshchikov S.V., Mathematical Modeling and Computational Methods, 2014, no. 2, 28–49

[17] Dimitrienko Yu.I., Yakovlev D.O., Mechanics of Composite Materials and Structures, 20:2 (2014), 259–282

[18] Dimitrienko Yu.I., Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2002, no. 1, 58–73

[19] Dimitrienko Yu.I., Dimitrienko I.D., “Simulation of local transfer in periodic porous media”, European Journal of Mechanics — B/Fluids, 37 (2013), 174–179

[20] Dimitrienko Yu.I., Dimitrienko I.D., Sborschikov S.V., “Multiscale Hierarchical Modeling of Fiber Reinforced Composites by Asymptotic Homogenization Method”, Applied Mathematical Sciences, 9:145 (2015), 7211–7220

[21] Dimitrienko Yu.I., Kashkarov A.I., Makashov A.A., Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2007, no. 1, 102–116

[22] Talreja R., ed., Damage Mechanics of Composite Materials, Elsevier Science, Oxford, 1994

[23] Dimitrienko Yu.I., Continuum Mechanics, BMSTU Publ., Moscow, 2013, 624 pp.

[24] Dimitrienko Yu.I., Tensor calculus, Vysshaya shkola, Moscow, 2001, 575 pp.