@article{MMCM_2015_8_a5,
author = {A. A. Fomin and L. N. Fomina},
title = {On stationary solution of the problem of an incompressible viscous fluid at high {Reynolds} numbers},
journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
pages = {92--109},
year = {2015},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMCM_2015_8_a5/}
}
TY - JOUR AU - A. A. Fomin AU - L. N. Fomina TI - On stationary solution of the problem of an incompressible viscous fluid at high Reynolds numbers JO - Matematičeskoe modelirovanie i čislennye metody PY - 2015 SP - 92 EP - 109 IS - 8 UR - http://geodesic.mathdoc.fr/item/MMCM_2015_8_a5/ LA - ru ID - MMCM_2015_8_a5 ER -
A. A. Fomin; L. N. Fomina. On stationary solution of the problem of an incompressible viscous fluid at high Reynolds numbers. Matematičeskoe modelirovanie i čislennye metody, no. 8 (2015), pp. 92-109. http://geodesic.mathdoc.fr/item/MMCM_2015_8_a5/
[1] Burggraf O.R., “Analytical and numerical studies of the structure of steady separated flows”, J. of Fluid Mechanics, 24 (1966), 113–151
[2] Ghia U., Ghia K.N., Shin C.T., “High-Re solution for incompressible flow using the Navier — Stokes equations and a multigrid method”, J. of Computational Physics, 48 (1982), 387–411
[3] Bruneau C.-H., Jouron C., “An efficient scheme for solving steady incompressible Navier Stokes equations”, J. of Computational Physics, 89 (1990), 389–413 | DOI
[4] Barragy E., Carey G.F., “Stream function-vorticity driven cavity solution using p finite elements”, Computers Fluids, 26:5 (1997), 453–468
[5] Marinova R.S., Christov C.I., Marinov T.T., “A fully coupled solver for incompressible Navier-Stokes equations using operator splitting”, Int. J. of Computational Fluid Dynamics, 17:5 (2003), 371–385 | DOI
[6] Bruneau C.-H., Saad M., “The 2D lid-driven cavity problem revisited”, Computers Fluids, 35 (2006), 326–348
[7] Kumar D.S., Kumar K.S., Kumar M.D., “A fine grid solution for a lid-driven cavity flow using multigrid method”, Engineering Applications of Computational Fluid Mechanics, 3:3 (2009), 336–354
[8] Erturk E., Corke T.C., Gokcol C., “Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers”, Int. J. for Numerical Methods in Fluids, 48 (2005), 747–774
[9] Cardoso N., Bicudo P., “Time dependent simulation of the Driven Lid Cavity at High Reynolds Number”, physics.fly-dyn, 2009, 1–20 arxiv.org/pdf/0809.3098.pdf
[10] Erturk E., Gokcol C., “Fourthorder compact formulation of Navier — Stokes equations and driven cavity flow at high Reynolds numbers”, Int. J. for Numerical Methods in Fluids, 2006, no. 50, 421–436
[11] Wahba E.M., “Steady flow simulation inside a driven cavity up to Reynolds number 35000”, Computers Fluids, 66 (2012), 85–97
[12] Basarab M.A., Mathematical Modeling and Computational Methods, 2014, no. 1, 18–35
[13] Fomin A.A., Fomina L.N., Computer Research and Modeling, 7:1 (2015), 35–50
[14] Belotserkovskiy O.M., Gushchin V.A., Shchennikov V.V., Math. Math. Phys., 15:1 (1975), 197–207
[15] Patankar S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Co, 1980, 197 pp.
[16] Fomin A.A., Fomina L.N., Tomsk State University J. of Mathematics and Mechanics, 2011, no. 14, 45–54
[17] Erturk E., “Discussions on driven cavity flow”, Int. J. for Numerical Methods in Fluids, 60 (2009), 275–294
[18] Roache P.J., Computational Fluid Dynamics, Hermosa Publs, Albuquerque, 1976, 446 pp.