Finite element simulation of the rock stress-strain state under creep
Matematičeskoe modelirovanie i čislennye metody, no. 7 (2015), pp. 101-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model for calculation of a rock stress-strain state considering creep is suggested. The algorithm for finite element solving the three-dimensional creep problem using finite-difference scheme of Euler's method with respect to time is presented. The specialized software is developed allowing the computer to build 3D-models of rock areas based on the initial series of 2D images, obtained with the seismic data, and to perform finite element calculation of variations in rock strain-stress state with time. Numerical simulation of rock stress-strain state was conducted on the example of a zone of the Astrakhan oil and gas field. It was found that there occurs rock mass rising in some points, and in the other points it can slope down with time. The creep rate of different layers is not the same — the highest values of the creep rate are realized in the layers of clay and sand, filled with fluid, which have the most notable creep properties. The developed algorithm and software for numerical simulation proved to be quite effective and can be applied to the study of rock stress-strain state.
Keywords: Rock, stress-strain state, creep, finite element method, numerical simulation.
@article{MMCM_2015_7_a6,
     author = {Yu. I. Dimitrienko and Yu. V. Yurin},
     title = {Finite element simulation of the rock stress-strain state under creep},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {101--118},
     year = {2015},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2015_7_a6/}
}
TY  - JOUR
AU  - Yu. I. Dimitrienko
AU  - Yu. V. Yurin
TI  - Finite element simulation of the rock stress-strain state under creep
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2015
SP  - 101
EP  - 118
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/MMCM_2015_7_a6/
LA  - ru
ID  - MMCM_2015_7_a6
ER  - 
%0 Journal Article
%A Yu. I. Dimitrienko
%A Yu. V. Yurin
%T Finite element simulation of the rock stress-strain state under creep
%J Matematičeskoe modelirovanie i čislennye metody
%D 2015
%P 101-118
%N 7
%U http://geodesic.mathdoc.fr/item/MMCM_2015_7_a6/
%G ru
%F MMCM_2015_7_a6
Yu. I. Dimitrienko; Yu. V. Yurin. Finite element simulation of the rock stress-strain state under creep. Matematičeskoe modelirovanie i čislennye metody, no. 7 (2015), pp. 101-118. http://geodesic.mathdoc.fr/item/MMCM_2015_7_a6/

[1] Guschenko O.I., Reports of RAS, 346:3 (1996), 399–402

[2] Zhalkovskiy N.D., Kuchay O.A., Muchnaya V.I., Geology and Geophysics, 36:10 (1995), 20–30

[3] Leonov Yu.G., Geotectonics, 1995, no. 6, 3–21

[4] Rebetskiy Yu.L., The Mechanism of the Generation of Residual Stresses and Large Horizontal Compressive Stresses in the Earth Crust Intraplate Orogenes, IFE RAS Publ., Moscow, 2008, 466 pp.

[5] Rebetskiy Yu.L., Physical mesomehanics, 11:1 (2008), 66–73

[6] Gzovskiy M.V., Fundamentals of Tectonophysics, Nauka Publ., Moscow, 1975, 533 pp.

[7] Van der Pluum V.A., “Marble myionites in the Bancroft shear zone, Ontario, Canada: microstructures and deformation mechanisms”, J. of Structural Geology, 13:10 (1991), 1125–1135 | DOI

[8] Kayumov R.A., Shakirzyanov F.R., Scientific notes of the Kazan University. Ser. Phys. and math., 153:4 (2011), 67–75

[9] Stephanov Yu.P., Physical mesomehanics, 8:3 (2005), 129–142

[10] Dimitrienko Yu.I., Continuum Mechanics, BMSTU Publ., Moscow, 2013, 624 pp.

[11] Dimitrienko Y.I., Gubareva E.A., Yurin Yu.V., Mathematical Modeling and Numerical Methods, 2014, no. 4, 18–36

[12] Dimitrienko Y.I., Gubareva E.A., Yurin Yu.V., Science and Education, 2015, no. 3

[13] Dimitrienko Yu.I., Continuum Mechanics, BMSTU Publ., Moscow, 2011, 367 pp.

[14] Implicit Creep ansys.net/ansys/papers/nonlinear/conflong_creep.pdf

[15] Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M., Numerical Methods, Binom Publ., Moscow, 2001, 375 pp.

[16] Faleychik B.V., One-Step Methods for the Numerical Solution to the Cauchy Problem, BGU Publ., Minsk, 2010, 42 pp.

[17] Dautov P.Z., Karachevskiy M.M., Introduction to the Finite-Element Theory, Kazan University Publ., Kazan, 2004, 239 pp.

[18] Dimitrienko Y.I., Gubareva E.A., Sborschikov S.V., Mathematical Modeling and Numerical Methods, 2014, no. 2, 28–48