Progressively censored sample comparison - numerical methods for homogeneity statistic distributions and study of communication parameters estimating by Monte Carlo method
Matematičeskoe modelirovanie i čislennye metody, no. 7 (2015), pp. 89-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers the problem of function estimating for times to failure translation from one mode to another. This problem arises, for example, when there is data on failures of products in vitro tests and you need to estimate the reliability of the same type products with actual test conditions. For simplicity, we consider the case where MTBF have linear relation. The proposed method is based on minimizing the Kolmogorov-Smirnov statistic, which is used to test the homogeneity of two progressively censored samples. A special feature of the proposed statisticis using the Kaplan-Meier estimates of the reliability function for each sample. Provided conjecture homogeneity of two samples, the distribution of statistics does not depend on the type of distribution of failures. This paper proposes a method for calculating the exact distributions of these statistics. Tables of exact distributions probabilities are presented for a wide range of possible values of the volumes of samples. By means of statistical modeling a table of acceleration factor values is calculated and its histograms are presented.
Keywords: Non-parametric statistics, the kolmogorov-smirnov test, kaplan-meier estimate, progressive censoring.
@article{MMCM_2015_7_a5,
     author = {V. I. Timonin and N. D. Tyannikova},
     title = {Progressively censored sample comparison - numerical methods for homogeneity statistic distributions and study of communication parameters estimating by {Monte} {Carlo} method},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {89--100},
     year = {2015},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2015_7_a5/}
}
TY  - JOUR
AU  - V. I. Timonin
AU  - N. D. Tyannikova
TI  - Progressively censored sample comparison - numerical methods for homogeneity statistic distributions and study of communication parameters estimating by Monte Carlo method
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2015
SP  - 89
EP  - 100
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/MMCM_2015_7_a5/
LA  - ru
ID  - MMCM_2015_7_a5
ER  - 
%0 Journal Article
%A V. I. Timonin
%A N. D. Tyannikova
%T Progressively censored sample comparison - numerical methods for homogeneity statistic distributions and study of communication parameters estimating by Monte Carlo method
%J Matematičeskoe modelirovanie i čislennye metody
%D 2015
%P 89-100
%N 7
%U http://geodesic.mathdoc.fr/item/MMCM_2015_7_a5/
%G ru
%F MMCM_2015_7_a5
V. I. Timonin; N. D. Tyannikova. Progressively censored sample comparison - numerical methods for homogeneity statistic distributions and study of communication parameters estimating by Monte Carlo method. Matematičeskoe modelirovanie i čislennye metody, no. 7 (2015), pp. 89-100. http://geodesic.mathdoc.fr/item/MMCM_2015_7_a5/

[1] Balakrishnan N., Tripathi R.C., Kannan N., “Some nonparametric precedence type tests based on progressively censored samples and evaluation of power”, J Stat Plan Infer, 2010, no. 140, 559–573 | DOI | MR | Zbl

[2] Maturi T.A., Coolen-Schrijner P., Coolen F.P., “Nonparametric predictive comparison of lifetime data under progressive censoring”, J Stat Plan Infer, 2010, no. 140, 515–525 | DOI | MR | Zbl

[3] Sadihov G.S, Krapotkin V.G., Kazakov O.I, “Calculating or estimating resource products using the additive model of damage accumulation”, Mathematical modeling and numerical methods, 2014, no. 1

[4] Balakrishnan N., “Weighted precedence and maximal precedence tests and an extension to progressive censoring”, J Stat Plan Infer,, 2005, no. 135, 197–221 | MR | Zbl

[5] Basu P., “Censored Data. Handbook of Statistics”, Elsevier Science Publishers, 4 (1984), 551–578 | MR | Zbl

[6] Bagdanovich V., Kruopis J. Nikulin M.S., Nonparametric tests for censored data, ISTE Ltd, London, 2011, 233 pp.

[7] Balakrishnan N., Cramer E., The Art of Progressive Censoring, Applications to Reliability and Quality. Springer, New York, 2014, 233 pp. | MR

[8] McPherson J.W., Reliability physics and engineering, Springer. Time-To-Failure modeling., New York, 2010, 318 pp.

[9] Gamiz M.L., Kulasekera K.B., Limnios N., Lindqvist B.H., Applied Nonparametric statistics in reliability, Springer, London, 2011, 229 pp. | MR | Zbl

[10] GnedenkoB.V., Belyaev Y.K., Soloviev A.D., Mathematical methods in reliability theory.The main characteristics of reliability and statistical analysis, Librokom, Moscow, 2013, 584 pp.

[11] Kaplan E.L., Meier P., “Nonparametric estimation from incomplete observations”, J Am Stat Assoc, 1958, no. 53:, 57–481 | MR

[12] Nelson W., Accelerated Testing: Statistical Models Test Plans and Data Analyses, JohnWiley Inc., NewYork, 1990, 515 pp.

[13] Timonin V.I., Yermolayeva M.A., “Kaplan–Meier estimation in statistics of the Kolmogorov–Smirnov hypothesis testing in trials with variable load”, Electromagnetic waves and electronic systems, 15:18–26 (2010)

[14] Timonin V.I., Tyannikova N.D., “Method of calculating the exact statistic distributions of the Kolmogorov-Smirnov test for violations of homogeneity and independence of the analyzed samples”, Electronic scientific and technical journal “Science and Education”, 2014, no. 11, 217–227

[15] Timonin V.I., “Optimization of preliminary research in the theory of forced testing”, Bauman MSTU. Ser. Natural Sciences, 2004, no. 1, 23–33

[16] Zarubin V.S., Kuvyrkin G.N., “The features of mathematical modeling of technical systems”, Mathematical modeling and numerical methods, 2014, no. 1