Modeling the stability of compressed and twisted rods in precise problem statement
Matematičeskoe modelirovanie i čislennye metody, no. 7 (2015), pp. 3-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article describes the method for calculating the stability of a rod under simultaneous action of axial force and torque, considering changing the torsion of the rod when it’s bent. The method is based on the use of the complete system of equations. The following cases are considered: end clamped rod, rod with a hinged support, the rod in the form of compressed and twisted console. Diagrams of dependence of the critical axial force versus the critical torque are obtained, i.e., the range of rod stability for the case of loading is determined.
Keywords: Rod, stability, flexural stiffness, critical force
Mots-clés : compression, torsion, torque.
@article{MMCM_2015_7_a0,
     author = {V. M. Dubrovin and T. A. Butina},
     title = {Modeling the stability of compressed and twisted rods in precise problem statement},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {3--16},
     year = {2015},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2015_7_a0/}
}
TY  - JOUR
AU  - V. M. Dubrovin
AU  - T. A. Butina
TI  - Modeling the stability of compressed and twisted rods in precise problem statement
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2015
SP  - 3
EP  - 16
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/MMCM_2015_7_a0/
LA  - ru
ID  - MMCM_2015_7_a0
ER  - 
%0 Journal Article
%A V. M. Dubrovin
%A T. A. Butina
%T Modeling the stability of compressed and twisted rods in precise problem statement
%J Matematičeskoe modelirovanie i čislennye metody
%D 2015
%P 3-16
%N 7
%U http://geodesic.mathdoc.fr/item/MMCM_2015_7_a0/
%G ru
%F MMCM_2015_7_a0
V. M. Dubrovin; T. A. Butina. Modeling the stability of compressed and twisted rods in precise problem statement. Matematičeskoe modelirovanie i čislennye metody, no. 7 (2015), pp. 3-16. http://geodesic.mathdoc.fr/item/MMCM_2015_7_a0/

[1] Shashkov I.E., “Prikladnaya mekhanika”, Applied Mechanics, XII:1 (1976), 71–76

[2] Dubrovin V.M., Butina T.A., “Inzhenernyi zhurnal: nauka i innovatsii”, Engineering Journal: Science and Innovations, 2014

[3] Feodosyev V.I., Selected Problems and Questions about the Strength of Materials, Nauka Publ., Moscow, 1993, 400 pp.

[4] Ponomarev S.D., Calculations of Strength in Mechanical Engineering, Mashgiz Publ., Moscow, 1959, 861 pp.

[5] Rabotnov Yu.N., The Problems of Deformable Solid Body Mechanics, Nauka Publ., Moscow, 1991, 194 pp. | MR

[6] Frolov K.V., Selected Works, Nauka Publ., Moscow, 2007, 526 pp.

[7] Dimitrienko Yu.I., Universalnye zakony mekhaniki i elektrodinamiki sploshnoi sredy, Izd-vo MGTU im. N.E. Baumana, Moskva, 2011, 560 pp.

[8] Dimitrienko Yu.I., Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2014, no. 1, 17–26

[9] Dimitrienko Yu.I., Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2014, no. 2, 77–89

[10] Gavryushin S.S., Mathematical Modeling and Numerical Methods, 2014, no. 1, 115–130

[11] Zhilin P.A., Topical Problems in Mechanics, Institute of Problems of Mechanical Engineering, St. Petersburg, 2006, 306 pp.

[12] Pikovskiy A., Rozenblum N., Kurts Yu, Tekhnosfera Publ., Synchronization. The Fundamental Nonlinear Phenomenon, 2003, 493 pp.

[13] Volmir A.S., Stability of Deformable Systems, Nauka Publ., Moscow, 1967, 987 pp.

[14] Butina T.A., Dubrovin V.M., Engineering Journal: Science and Innovations, 2012, no. 2