Parallel multigrid algorithms
Matematičeskoe modelirovanie i čislennye metody, no. 6 (2015), pp. 105-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper represents the main directions of development of the parallel classic multigrid algorithms and discusses their disadvantages. The possibility of efficient parallelization of smoothing iterations at the levels of coarse grids is shown using the Robust Multigrid Technique. Then multigrid structure is used for developing hybrid multigrid method. The paper describes estimations of speed-up and efficiency of different parallel multigrid al-gorithms as well as the results of numerical experiments.
Mots-clés : multigrid technique
Keywords: boundary value problems, parallelism.
@article{MMCM_2015_6_a6,
     author = {S. I. Martynenko},
     title = {Parallel multigrid algorithms},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {105--120},
     year = {2015},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2015_6_a6/}
}
TY  - JOUR
AU  - S. I. Martynenko
TI  - Parallel multigrid algorithms
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2015
SP  - 105
EP  - 120
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/MMCM_2015_6_a6/
LA  - ru
ID  - MMCM_2015_6_a6
ER  - 
%0 Journal Article
%A S. I. Martynenko
%T Parallel multigrid algorithms
%J Matematičeskoe modelirovanie i čislennye metody
%D 2015
%P 105-120
%N 6
%U http://geodesic.mathdoc.fr/item/MMCM_2015_6_a6/
%G ru
%F MMCM_2015_6_a6
S. I. Martynenko. Parallel multigrid algorithms. Matematičeskoe modelirovanie i čislennye metody, no. 6 (2015), pp. 105-120. http://geodesic.mathdoc.fr/item/MMCM_2015_6_a6/

[1] Vlasova E.A., Zarubin V.S., Kuvyrkin G.N., Approximate methods in mathematical physics, BMSTU pbl., Moscow, 2001, 700 pp.

[2] Galanin M.P., Savenkov E.V., Methods of numerical analysis of mathematical models, BMSTU Publ., Moscow, 2010, 592 pp.

[3] Trottenberg U., Oosterlee C.W., Schuller A., Multigrid, Academic Press, London, 2001 | MR | Zbl

[4] Martynenko S.I., “Robust multigrid technique for solving boundary value problems on the structured grids”, Numerical methods and programming, 1:1 (2000), 85–104

[5] Martynenko S.I., “Robust multigrid technique for black box software”, Comp. Meth. in Appl. Math., 6:4 (2006), 413–435 | MR | Zbl

[6] Martynenko S.I., Mathematical Modeling, 21:9 (2009), 66–79 | MR | Zbl

[7] Martynenko S.I., “Formalisation of the multigrid computations”, Int. J. of Comp. Science and Math., 4:4 (2013), 309–320 | DOI | MR | Zbl

[8] Martynenko S.I., Robust multigrid technique, Keldysh Institute of Applied Mathematic of RAS Publ., Moscow, 2013

[9] Martynenko S.I., “Deparallelization of the robust multigrid technique”, Numerical methods and programming, 4:1 (2003), 45–51

[10] Martynenko S.I., “Potentialities of the Robust Multigrid Technique”, Comp. Meth. in Appl. Math., 10:1 (2010), 87–94 | MR | Zbl

[11] Martynenko S.I., Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2011, no. 4, 63–80

[12] Voevodin V.V., Voevodin Vl.V., Parallel computing, BHV-Petersburg Publ., St. Petersburg, 2002, 608 pp.

[13] Nemnyugin S.A., Stesik O.L., Parallel programming for the multiproces-sor computing systems, BHV-Petersburg Publ., St. Petersburg, 2002, 400 pp.

[14] Kopysov S.P., Novikov A.K., Intermediate software for the parallel computing, Udmurtia University Publ., Izhevsk, 2012, 140 pp.

[15] Ortega J.M., Introduction to parallel and vector solution of linear systems, Plenum Press, New York, 1988, 367 pp. | MR

[16] Zhukov V.T., Novikova N.D., Feodoritova O.B., A parallel multigrid method for the elliptic difference equations, Basic compo-nents of the algorithm. Preprint of Keldysh Institute of Applied Mathematic of RAS, 2012, 32 pp. library.keldysh.ru/preprint.asp?id=2012-30

[17] Antonov A.S., Parallel programming using technology OpenMP, MSU Publ., Moscow, 2009, 77 pp.