Global climate model including description of thermohaline circulation of the World Ocean
Matematičeskoe modelirovanie i čislennye metody, no. 5 (2015), pp. 94-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article considers a model of the climate, including interacting blocks of the ocean, atmosphere and sea ice. The model describes the deep thermohaline circulation of the oceans and the main characteristics of the other elements of the climate system. The paper presents model operating in the mode of the seasonal variations of solar radiation. The changes in atmospheric temperature in XXI century for different scenarios of CO$_2$ concentration variations are calculated.
Keywords: Climate model, thermohaline circulation, solar radiation.
@article{MMCM_2015_5_a6,
     author = {V. P. Parkhomenko},
     title = {Global climate model including description of thermohaline circulation of the {World} {Ocean}},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {94--108},
     year = {2015},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2015_5_a6/}
}
TY  - JOUR
AU  - V. P. Parkhomenko
TI  - Global climate model including description of thermohaline circulation of the World Ocean
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2015
SP  - 94
EP  - 108
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/MMCM_2015_5_a6/
LA  - ru
ID  - MMCM_2015_5_a6
ER  - 
%0 Journal Article
%A V. P. Parkhomenko
%T Global climate model including description of thermohaline circulation of the World Ocean
%J Matematičeskoe modelirovanie i čislennye metody
%D 2015
%P 94-108
%N 5
%U http://geodesic.mathdoc.fr/item/MMCM_2015_5_a6/
%G ru
%F MMCM_2015_5_a6
V. P. Parkhomenko. Global climate model including description of thermohaline circulation of the World Ocean. Matematičeskoe modelirovanie i čislennye metody, no. 5 (2015), pp. 94-108. http://geodesic.mathdoc.fr/item/MMCM_2015_5_a6/

[1] Kochergin V.P., Theory and Methods of Ocean Currents Calculation, Nauka Publ., Moscow, 1978, 128 pp. | MR

[2] Marsh R., Edwards N.R., Shepherd J.G., “Development of a fast climate model (C-GOLDSTEIN) for Earth System Science”, SOC, 2002, no. 83, 54

[3] Arakawa A., Lamb V., “Computational design of the basic dynamical processes of the ucla general circulation model”, Methods in Computational Physics, 17, Academic Press, 1977, 174–207 | MR

[4] Shepherd J.G., “Overcoming the CFL time-step limitation: a stable iterative implicit numerical scheme for slowly evolving advection-diffusion systems”, Ocean Modelling, 4 (2002), 17–28

[5] Weaver A.J., Eby M., Wiebe E.C., Bitz C.M., Duffy P.B., Ewen T.L., Fanning A.F., Holland M.M., MacFadyen A., Matthews H.D., Meissner K.J., Saenko O., Schmittner A., Wang H., Yoshimori M., “The UVic Earth System Climate Model: Model description, climatology, and applications to past, present and future climates”, Atmos-Ocean, 39 (2001), 361–428 | DOI

[6] Thompson S.L., Warren S.G., “Parametrization of outgoing infared radiation derived from detailed radiative calculations”, J. Atmos. Sci., 39 (1982), 2667–2680 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[7] Holland D.M., Mysak L.A., Manak D.K., Oberhuber J.M., “Sensitivity study of a dynamic thermodynamic sea ice model”, J. Geophys. Res., 98 (1993), 2561–2586 | DOI

[8] Millero F.J., “Annex 6, freezing point of seawater.”, Unesco Tech. Papers in the Marine Sciences, 28 (1978), 29–35

[9] McPhee M.G., “Turbulent heat flux in the upper ocean sea ice”, J. Geophys. Res., 97 (1992), 5365–5379 | DOI

[10] Nakicenovic N., IPCC Special Report on Emission Scenarios, Cambridge University Press, 2000