Keywords: nonlinear delay differential equations, generalized separation of variables, nonlinear instability, global instability.
@article{MMCM_2014_4_a3,
author = {A. D. Polyanin and V. G. Sorokin and A. V. Vyazmin},
title = {Nonlinear delay reaction-diffusion equations of hyperbolic type: {Exact} solutions and global instability},
journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
pages = {53--73},
year = {2014},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMCM_2014_4_a3/}
}
TY - JOUR AU - A. D. Polyanin AU - V. G. Sorokin AU - A. V. Vyazmin TI - Nonlinear delay reaction-diffusion equations of hyperbolic type: Exact solutions and global instability JO - Matematičeskoe modelirovanie i čislennye metody PY - 2014 SP - 53 EP - 73 IS - 4 UR - http://geodesic.mathdoc.fr/item/MMCM_2014_4_a3/ LA - ru ID - MMCM_2014_4_a3 ER -
%0 Journal Article %A A. D. Polyanin %A V. G. Sorokin %A A. V. Vyazmin %T Nonlinear delay reaction-diffusion equations of hyperbolic type: Exact solutions and global instability %J Matematičeskoe modelirovanie i čislennye metody %D 2014 %P 53-73 %N 4 %U http://geodesic.mathdoc.fr/item/MMCM_2014_4_a3/ %G ru %F MMCM_2014_4_a3
A. D. Polyanin; V. G. Sorokin; A. V. Vyazmin. Nonlinear delay reaction-diffusion equations of hyperbolic type: Exact solutions and global instability. Matematičeskoe modelirovanie i čislennye metody, no. 4 (2014), pp. 53-73. http://geodesic.mathdoc.fr/item/MMCM_2014_4_a3/
[1] Lykov A.V., Heat Conduction Theory, Vysshaya Shkola Publ., Moscow, 1967, 600 pp. | Zbl
[2] Kutateladze S.S., Fundamentals of Heat Transfer Theory, Atomizdat Publ., Moscow, 1979, 416 pp.
[3] Polyanin A.D., Kutepov A.M., Vyazmin A.V., Kazenin D.A., Hydrodynamics, mass and heat transfer in chemical engineering, Taylor Francis, London, 2002, 387 pp. | Zbl
[4] Cattaneo C., “A form of heat conduction equation which eliminates the paradox of instantaneous propagation”, Comptes Rendus, 247 (1958), 431-433 | MR
[5] Vernotte P., “Some possible complications in the phenomena of thermal conduction”, Comptes Rendus, 252 (1961), 2190–2191 | MR
[6] Polyanin A.D., Vyazmin A.V., Zhurov A.I., Kazenin D.A., Handbook of Exact Solutions to the Equations of Heat and Mass Transfer, Faktorial Publ., Moscow, 1998, 368 pp.
[7] Wu J., Theory and applications of partial functional differential equations, Springer, New York, 1996, 119 pp. | MR
[8] Wu J., Zou X., “Traveling wave fronts of reaction-diffusion systems with delay”, J. Dynamics Dif. Equations, 13:3 (2001), 651–687 | DOI | MR | Zbl
[9] Faria T., Trofimchuk S., “Nonmonotone travelling waves in a single species reaction– diffusion equation with delay”, J. Dif. Equations, 228 (2006), 357–376 | DOI | MR | Zbl
[10] Smith H.L., An introduction to delay differential equations with applications to the life sciences, Springer, New York, 2010, 182 pp. | MR
[11] Polyanin A.D., Zhurov A.I., “Exact separable solutions of delay reaction-diffusion equations and other nonlinear partial functional-differential equations”, Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 409–416 | DOI | MR
[12] Kyrychko Y.N., Hogan S.J., “On the use of delay equations in engineering applications.”, J. of Vibration and Control, 16:7 (2010), 943–960 | DOI | MR | Zbl
[13] Polyanin A.D., Zhurov A.I., “Exact solutions of linear and nonlinear differentialdifference heat and diffusion equations with finite relaxation time”, Int. J. Non-Linear Mechanics, 54 (2013), 115–126 | DOI
[14] Polyanin A.D., Zhurov A.I., “New generalized and functional separable solutions to nonlinear delay reaction-diffusion equations”, Int. J. Non-Linear Mechanics, 59 (2014), 16–22 | DOI
[15] Polyanin A.D., Vyazmin A.V., Theoretical Foundation of Chemical Engineering, 47:3 (2013), 217–224 | DOI | MR
[16] Polyanin A.D., Vyazmin A.V., Chemistry and Chemical Technology Research-Engineering Journal, 56:9 (2013), 102–108
[17] Polyanin A.D., Zhurov A.I., “Generalized and functional separable solutions to nonlinear delay Klein – Gordon equations”, Communications in Nonlinear Science and Numerical Simulation, 19:8 (2014), 2676–2689 | DOI | MR
[18] Polyanin A.D., Sorokin V.G., Bulletin of National Research Nuclear University (MIFI), 3:2 (2014), 141–148 | MR
[19] Polyanin A.D., Vyazmin A.V., Theoretical Foundation of Chemical Engineering, 47:4 (2013), 321–329 | DOI
[20] Polyanin A.D., Zhurov A.I., “The functional constraints method: Application to non-linear delay reaction-diffusion equations with varying transfer coefficients, Int”, J. Non-Linear Mechanics, 67 (2014), 267–277 | DOI
[21] Polyanin A.D., Zhurov A.I., “Nonlinear delay reaction-diffusion equations with varying transfer coefficients: Exact methods and new solutions”, Applied Mathematics Letters, 37 (2014), 43–48 | DOI | MR
[22] Smith H.L., Zhao X.Q., “Global asymptotic stability of travelling waves in delayed reaction-diffusion equations.”, SIAM J. Math. Anal, 31 (2000), 514–534 | DOI | MR | Zbl
[23] Mei M., So J., Li M., Shen S., “Asymptotic stability of travelling waves for Nicholson’s blowflies equation with diffusion”, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 579–594 | DOI | MR | Zbl
[24] Polyanin A.D., Engineering Journal: Science and Innovation, 16:4 (2013), 1–14
[25] Polyanin A.D., Zhurov A.I., “Non-linear instability and exact solutions to some delay reaction-diffusion systems”, Int. J. Non-Linear Mechanics, 62 (2014), 33–40 pp. | DOI
[26] Bellman R., Cooke K.L., Differential-Difference Equations, Academic, New York, 1967, 548 pp. | MR | Zbl
[27] Driver R.D., Ordinary and delay differential equations, Springer, New York, 1977, 505 pp. | MR | Zbl
[28] Kuang Y., Delay differential equations with applications in population dynamics, Academic Press, Boston, 1993, 398 pp. | MR
[29] Cui B.T., Yu Y.H., Lin S.Z., “Oscillations of solutions of delay hyperbolic differential equations”, Acta Math. Appl. Sinica, 19 (1996), 80–88 | MR | Zbl
[30] Wang J., Meng F., Liu S., “Interval oscillation criteria for second order partial differential equations with delays”, J. Comp. Appl. Math., 212:2 (2008), 397–405 | DOI | MR | Zbl
[31] Cui S., Xu Z., “Interval oscillation theorems for second order nonlinear partial delay differential equations”, Dif. Equations Appl., 1:3 (2009), 379–391 | DOI | MR | Zbl
[32] Jackiewicza Z., Zubik-Kowal B., “Spectral collocation and waveform relaxation methods for nonlinear delay partial differential equations”, Applied Numerical Mathematics, 56:3-4 (2006), 433–443 | DOI | MR
[33] Zhang Q., Zhang C., “A compact difference scheme combined with extrapolation techniques for solving a class of neutral delay parabolic differential equations”, Applied Mathematics Letters, 26:2 (2013), 306–312 | DOI | MR | Zbl
[34] Polyanin A.D., Zaitsev V.F., Handbook of nonlinear partial differential equations, 2nd edition., Chapman Hall/CRC Press, Boca Raton, 2012, 1912 pp. | MR
[35] Galaktionov V.A., Svirshchevskii S.R., Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics., Chapman Hall/CRC Press, Boca Raton, 2007, 498 pp. | MR | Zbl
[36] Pucci E., Saccomandi G., “Evolution equations, invariant surface conditions and functional separation of variables”, Physica D: Nonlinear Phenomena, 139 (2000), 28–47 | DOI | MR | Zbl
[37] Polyanin A.D., Zhurov A.I., “Functional constraints method for constructing exact solutions to delay reaction-diffusion equations and more complex nonlinear equations”, Communications in Nonlinear Science and Numerical Simulation, 19:3 (2014), 417–430 pp. | MR