Mots-clés : scale invariance
@article{MMCM_2014_3_a5,
author = {A. V. Podlazov},
title = {Two-dimensional self-organized critical {{\CYRM}anna} model},
journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
pages = {89--110},
year = {2014},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMCM_2014_3_a5/}
}
A. V. Podlazov. Two-dimensional self-organized critical Мanna model. Matematičeskoe modelirovanie i čislennye metody, no. 3 (2014), pp. 89-110. http://geodesic.mathdoc.fr/item/MMCM_2014_3_a5/
[1] Bak P., Tang C., Wiesenfeld K., “Self-organized criticality”, Phys. Rev. A, 38:1 (1988), 364–374
[2] Bak P., Kak rabotaet priroda: Teoriya samoorganizovannoi kritichnosti. Sinergetika: ot proshlogo k buduschemu, Librokom, Moskva, 2013, 276 pp.
[3] Manna S.S., “Two-state model of self-organized criticality”, J. Phys. A: Math. Gen., 24 (1991), L363–L639
[4] Milshtein E., Biham O., Solomon S., “Universality classes in isotropic, Abelian, and non-Abelian sandpile models”, Phys. Rev. E, 58:1 (1998), 303–310
[5] Zhang Y.C., “Scaling theory of self-organized criticality”, Phys. Rev. Lett., 63:5 (1989), 470–473
[6] Ben-Hur A., Biham O., “Universality in sandpile models”, Phys. Rev. E, 53:2 (1996), R1317–R1320
[7] Malinetskiy G.G., Podlazov A.V., Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2012, no. 2, 119–128
[8] Pietronero L., Vespignani A., Zapperi S., “Renormalization scheme for selforganized criticality in sandpile models”, Phys. Rev. Lett., 72:11 (1994), 1690–1693
[9] Vespignani A., Zapperi S., Pietronero L., “Renormalization approach to the selforganized critical behavior of sandpile models”, Phys. Rev. E, 51:3 (1995), 1711–1724
[10] Diaz-Guilera A., “Dynamic renormalization group approach to self-organized critical phenomena”, Europhys. Lett., 26:3 (1994), 177
[11] Corral A., Diaz-Guilera A., “Symmetries and fixed point stability of stochastic differential equations modeling self-organized criticality”, Phys. Rev. E, 55:3 (1997), 2434–2445
[12] Dhar D., Ramaswamy R., “Exactly solved model of self-organized critical phenomena”, Phys. Rev. Lett., 63:16 (1989), 1659–1662
[13] Pastor-Satorras R., Vespignani A., “Universality classes in directed sandpile models”, J. Phys. A: Math. Gen., 2000, no. 33, L33–L39
[14] Paczuski M., Bassler K.E., “Theoretical results for sandpile models of SOC with multiple topplings”, Phys. Rev. E, 62:4 (2000), 5347–5352
[15] Kloster M., Maslov S., Tang C., “Exact solution of stochastic directed sandpile model”, Phys. Rev. E, 63:2 (2001), 26–111
[16] Feder H.J.S., Feder J., “Self-organized criticality in a stick-slip process”, Phys. Rev. Lett., 66:20 (1991), 2669–2672
[17] Kadanoff L.P., Nagel S.R., Wu L., Zhou S., “Scaling and universality in avalanches”, Phys. Rev. A, 39:12 (1989), 6524–6537
[18] Podlazov A.V., Proceedings of the universities: Applied Nonlinear Dynamics, 20:6 (2012), 25–46
[19] Lubeck S., Usadel K.D., “Bak-Tang-Wiesenfeld sandpile model around upper critical dimension”, Phys. Rev. E, 56:5 (1997), 5138–5143
[20] Chessa A., Vespignani A., Zapperi S., “Critical exponents in stochastic sandpile models”, Comput. Phys. Commun., 122 (1999), 299–302
[21] Lubeck S., “Moment analysis of the probability distributions of different sandpile models”, Phys. Rev. E, 61:1 (2000), 204–209
[22] Lubeck S., Usadel K.D., “Numerical determination of the avalanche exponents of the Bak-Tang-Wiesenfeld model”, Phys. Rev. E, 55:4 (1997), 4095–4099
[23] Ivashkevich E.V., Ktitarev D.V., Priezzhev V.B., “Waves of topplings in an Abelian sandpile”, Physica A, 209 (1994), 347–360