Calculation of aircraft gas-dynamic ejection systems with due consideration of the secondary combustion effects
Matematičeskoe modelirovanie i čislennye metody, no. 3 (2014), pp. 55-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article presents a method of accounting for secondary combustion effects when solid propellant power device is used for the gas-dynamic ejection of lifting vehicles. The method is based on thermo chemistry calculations. The suggested method can be easily applied to engineering calculations of aircraft gas-dynamic ejection systems as well as to the analysis of experimental data involving secondary combustion effects.
Keywords: Gas-dynamic ejection, lifting vehicle, secondary combustion, thermo chemistry calculations.
@article{MMCM_2014_3_a3,
     author = {A. V. Plyusnin},
     title = {Calculation of aircraft gas-dynamic ejection systems with due consideration of the secondary combustion effects},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {55--73},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2014_3_a3/}
}
TY  - JOUR
AU  - A. V. Plyusnin
TI  - Calculation of aircraft gas-dynamic ejection systems with due consideration of the secondary combustion effects
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2014
SP  - 55
EP  - 73
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MMCM_2014_3_a3/
LA  - ru
ID  - MMCM_2014_3_a3
ER  - 
%0 Journal Article
%A A. V. Plyusnin
%T Calculation of aircraft gas-dynamic ejection systems with due consideration of the secondary combustion effects
%J Matematičeskoe modelirovanie i čislennye metody
%D 2014
%P 55-73
%N 3
%U http://geodesic.mathdoc.fr/item/MMCM_2014_3_a3/
%G ru
%F MMCM_2014_3_a3
A. V. Plyusnin. Calculation of aircraft gas-dynamic ejection systems with due consideration of the secondary combustion effects. Matematičeskoe modelirovanie i čislennye metody, no. 3 (2014), pp. 55-73. http://geodesic.mathdoc.fr/item/MMCM_2014_3_a3/

[1] Degtyar V.G., Pegov V.I., Hydrodynamics of underwater missile launch, Mashinostroenie-Polet Publ., Moscow, 2009, 448 pp.

[2] Konyukhov S.N., Logachev P.P., Mortar launching intercontinental ballistic missiles, Institute of Technical Mechanics NAS and SSA of Ukraine, Dnepropetrovsk, 1997, 211 pp.

[3] Efremov G.A., Minasbekov D.A., Modestov V.A., Strakhov A.N., Bondarenko L.A., Yakimov Yu.L., Plyusnin A.V., Krupchatnikov I.V., Sokolov P.M., Govorov V.V., Sposob imitatsii uslovii starta rakety iz podvodnoi lodki i sistema dlya ego osuschestvleniya, Pat. Rossiiskaya Federatsiya Pat. Rossiiskaya Federatsiya No 2082936, byul. No 18, 1997

[4] Plyusnin A.V., Sabirov Yu.R., Bondarenko L.A., Sokolov P.M., Govorov V.V., Sposob imitatsii uslovii minometnogo starta rakety iz podvodnoi lodki i sistema dlya ego osuschestvleniya, Pat. Rossiiskaya Federatsiya No 2482425, byul. No 14, 2013

[5] Plyusnin A.V., Bondarenko L.A., “Sposoby krupnomasshtabnogo modelirovaniya sistem gazodinamicheskogo vybrosa”, Inzhenernyi zhurnal: nauka i innovatsii, 2012, no. 2 engjournal.ru/articles/61/61.pdf

[6] Plyusnin A.V., Sabirov Yu.R., Bondarenko L.A., Sokolov P.M., “Razrabotka novykh raschetno-teoreticheskikh i eksperimentalnykh podkhodov k resheniyu sovremennykh zadach gazodinamiki podvodnogo starta”, Aktualnye problemy rossiiskoi kosmonavtiki, Tr. XXXVIII akademicheskikh chtenii po kosmonavtike, Moskva, 2014, 612–613

[7] Plyusnin A.V., Mathematical Modeling and Numerical Methods, 2014, no. 2, 99–122

[8] Alemasov V.E., Dregalin A.F., Tishin A.P., Theory of rocket engines, Mashinostroenie Publ., Moscow, 1989, 464 pp.

[9] Sorokin R.E., Theory of processes inside the thrust chamber in solid propellant missile systems: Internal ballistics, Nauka Publ., Moscow, 1983, 288 pp.

[10] Sinyarev G.B., Vatolin N.A., Trusov B.G., Application of computers for thermodynamic calculations, Nauka Publ., Moscow, 1982, 267 pp.

[11] Alemasov V.E., Thermodynamic and thermophysical properties of rocket propellants and their combustion products, USSR Min. Def. Publ., Moscow, 1977, 318 pp.

[12] Glushko V.P., Termodinamicheskie svoistva individualnykh veschestv, Nauka, Moskva, 1979, 784 pp.

[13] Dennis J.E., Schnabel R.B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall Inc., New Jersey, 1983, 440 pp.

[14] Bratchev A.V., Vartanov T.R., Plyusnin A.V., “Issledovanie nekotorykh svoistv techeniya v zamknutom ob'eme pri vytalkivanii porshnya”, Sb. tr. Chetvertoi konferentsii polzovatelei programmnogo obespecheniya CADFEM GmbH, Moskva, 2004, 251–257

[15] Bratchev A.V., Vartanov T.R., Plyusnin A.V., Folomova A.I., Kompleksnoe primenenie matematicheskikh i fizicheskikh metodov dlya analiza rezultatov gidrogazodinamicheskikh ispytanii, Izd-vo MGTU im. N.E. Baumana, Moskva, 2004, 140 pp.

[16] Sedov L.I., Mekhanika sploshnoi sredy, Lan, Sankt-Peterburg, 2004, 1088 pp.

[17] Samarskiy A.A., Popov Yu.P., Difference schemes of gas dynamics, Nauka Publ., Moscow, 1973, 420 pp.

[18] Hirsch C., Numerical Computation of Internal and External Flows, John Wiley Sons, New York, 1977, 1206 pp.

[19] Bazarov I.P., Thermodynamics, Vysshaya shkola Publ., Moscow, 1991, 376 pp.

[20] Prigogine I., Defay R., Chemical Thermodynamics, Longman, London, 1967, 502 pp.

[21] Reid R.C., Prausnitz J.M., Sherwood T.K., The Properties of Gases and Liquids, McGraw–Hill, Inc., 1977, 592 pp.

[22] Atkins P.W., Physical Chemistry, W.H. Freeman, New York, 1999, 1164 pp.

[23] Kondepudi D., Progogine I., Modern Thermodynamics, John Wiley Sons, New York, 1999, 462 pp.