Modeling polyurethane viscoelasticity at moderately high strain rates
Matematičeskoe modelirovanie i čislennye metody, no. 3 (2014), pp. 39-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article presents a mathematical model of the viscoelastic behavior of polyurethane SKU-PFL-100 for strain range of $0\dots30\%$ and moderately high strain rates up to $10^{-1}$. To determine the viscous component of the deformation Bergstrom – Boyce rheological model has been applied. Relationship between stress and the elastic component of deformation is described by an Arruda – Boyce potential. We determined the model parameters using experimental compression diagrams of polyurethane obtained from Instron Electropuls 1000 machine at different strain rates. The model parameter values obtained by minimizing a function of the calculated value deviations from the experimental results are given. It is shown that in the considered range of deformations and strain rates model allows describing the polyurethane behavior with sufficient accuracy for practical purposes. The model is designed for calculating polyurethane shock-absorber parts, cushions, buffers and other structures subjected to dynamic loading.
Keywords: Polyurethane, viscoelasticity, Bergstrom – Boyce mathematical model, Arruda – Boyce elastic potential, compression diagrams, strain rate, determination of model parameters.
@article{MMCM_2014_3_a2,
     author = {A. E. Belkin and I. Z. Dashtiev and B. V. Lonkin},
     title = {Modeling polyurethane viscoelasticity at moderately high strain rates},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {39--54},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2014_3_a2/}
}
TY  - JOUR
AU  - A. E. Belkin
AU  - I. Z. Dashtiev
AU  - B. V. Lonkin
TI  - Modeling polyurethane viscoelasticity at moderately high strain rates
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2014
SP  - 39
EP  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MMCM_2014_3_a2/
LA  - ru
ID  - MMCM_2014_3_a2
ER  - 
%0 Journal Article
%A A. E. Belkin
%A I. Z. Dashtiev
%A B. V. Lonkin
%T Modeling polyurethane viscoelasticity at moderately high strain rates
%J Matematičeskoe modelirovanie i čislennye metody
%D 2014
%P 39-54
%N 3
%U http://geodesic.mathdoc.fr/item/MMCM_2014_3_a2/
%G ru
%F MMCM_2014_3_a2
A. E. Belkin; I. Z. Dashtiev; B. V. Lonkin. Modeling polyurethane viscoelasticity at moderately high strain rates. Matematičeskoe modelirovanie i čislennye metody, no. 3 (2014), pp. 39-54. http://geodesic.mathdoc.fr/item/MMCM_2014_3_a2/

[1] Dimitrienko Yu.I., Dashtiev I.Z., Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2001, no. 1, 21–41

[2] Dimitrienko Yu.I., Nonlinear continuum mechanics, Fizmatlit Publ., Moscow, 2009, 610 pp.

[3] Bergstr J.S., Boyce M.C., “Constitutive modeling of the large strain timedependent behavior of elastomers”, Journal of Mechanic Physics Solids, 46 (1998), 931–954

[4] Bergstr J.S., Boyce M.C., “Mechanical behavior of particle filled elastomers”, Rubber Chem. Technol., 72 (1999), 633–656

[5] Quintavalla S.J., Johnson S.H., “Extension of the Bergström-Boyce model to high strain rates”, Rubber Chem. Technol., 77 (2004), 972–981

[6] Qi H.J., Boyce M.C., “Stress-strain behavior of thermoplastic polyurethane”, Mechanics of Materials, 37:8 (2005), 817–839

[7] Golovanov A.I., Sultanov L.U., Mathematical models of computational nonlinear mechanics of deformable bodies, Kazan State University Publ., Kazan, 2009, 465 pp.

[8] Arruda E.M., Boyce M.C., “A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials”, Journal of Mechanic Physics Solids, 41:2 (1993), 389–412

[9] Cohen A.A., “Pade approximant to the inverse Langevin function”, Rheologica Acta, 30 (1991), 270–273

[10] Norgan C.O., Saccomandi G.A., “Molecular-statistical basis for the gent constitutive model of rubber elasticity”, Journal of Elasticity, 68 (2002), 167–176

[11] Doi M., Edvards S., Dinamicheskaya teoriya polimerov, Mir, Moskva, 1998, 440 pp.

[12] Kachanov L.M., Fundamentals of the theory of plasticity, Nauka Publ., Moscow, 1969, 420 pp.