Mechanical analog modeling of the inelastic non-isothermal deformation processes
Matematičeskoe modelirovanie i čislennye metody, no. 3 (2014), pp. 25-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The mechanical analog, allowing qualitatively and quantitatively describe the main features of inelastic deformation of the structural material at varying temperatures is presented. Analog is constructed using physical conceptions of polycrystalline structural material microstructures and the micromechanism of deformation process in combination with known provisions of the phenomenological theory of plasticity and creep. In the context of the particular modes of thermal and mechanical impacts on a heat-stressed structure this approach allows choosing a rational option of the structural material model adequately describing the most essential effects specific for the process of inelastic non-isothermal deformation. A variant of such a model under material singleaxis loading is developed and an example of its parameter numerical values selection is presented.
Keywords: Mechanical analog, mathematical model, inelastic non-isothermal deformation, single-axis loading.
@article{MMCM_2014_3_a1,
     author = {V. S. Zarubin and G. N. Kuvyrkin and I. Yu. Savelyeva},
     title = {Mechanical analog modeling of the inelastic non-isothermal deformation processes},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {25--38},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2014_3_a1/}
}
TY  - JOUR
AU  - V. S. Zarubin
AU  - G. N. Kuvyrkin
AU  - I. Yu. Savelyeva
TI  - Mechanical analog modeling of the inelastic non-isothermal deformation processes
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2014
SP  - 25
EP  - 38
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MMCM_2014_3_a1/
LA  - ru
ID  - MMCM_2014_3_a1
ER  - 
%0 Journal Article
%A V. S. Zarubin
%A G. N. Kuvyrkin
%A I. Yu. Savelyeva
%T Mechanical analog modeling of the inelastic non-isothermal deformation processes
%J Matematičeskoe modelirovanie i čislennye metody
%D 2014
%P 25-38
%N 3
%U http://geodesic.mathdoc.fr/item/MMCM_2014_3_a1/
%G ru
%F MMCM_2014_3_a1
V. S. Zarubin; G. N. Kuvyrkin; I. Yu. Savelyeva. Mechanical analog modeling of the inelastic non-isothermal deformation processes. Matematičeskoe modelirovanie i čislennye metody, no. 3 (2014), pp. 25-38. http://geodesic.mathdoc.fr/item/MMCM_2014_3_a1/

[1] Novikov I.I., Defects of a crystal structure of metals, Metallurgiya Publ., Moscow, 1983, 232 pp.

[2] Kelly A., Groves G.W., Crystallography and Crystal Defects, London, Longman, 1970, 496 pp.

[3] Polukhin P.I., Gorelik S.S., Vorontsov V.K., Physical bases of plastic deformation, Metallurgiya Publ., Moscow, 1982, 584 pp.

[4] Rabotnov Yu.N., Mechanics of a deformable solid body, Nauka Publ., Moscow, 1988, 712 pp.

[5] Malinin N.N., Applied plasticity and creep theory, Mashinostroenie Publ., Moscow, 1975, 400 pp.

[6] Shtremel M.A., Durability of alloys. Part 1. Defects of a lattice, Metallurgiya Publ., Moscow, 1982, 280 pp.

[7] Zarubin V.S., Applied problems of thermodurability of structure elements, Mashinostroenie Publ., Moscow, 1985, 296 pp.

[8] Arzamasov B.N., Scientific bases of materials science, BMSTU Publ., Moscow, 1994, 366 pp.

[9] Zarubin V.S., Kuvyrkin G.N., Mathematical models of continuum mechanics and electrodynamics, BMSTU Publ., Moscow, 2008, 512 pp.

[10] Gusenkov A.P., Durability at isothermal and non-isothermal lowcyclic loading, Nauka Publ., Moscow, 1979, 296 pp.

[11] Makhutov N.A., Gadenin M.M., Gokhfeld D.A., The state equations at low-cyclic loading, Nauka Publ., Moscow, 1981, 344 pp.

[12] Zarubin V.S., Kuvyrkin M.A., “Special features of mathematical modeling of technical instruments”, Mathematical Modeling and Computational Methods, 2014, no. 1, 5–18

[13] Zarubin V.S., Kuzmin M.A., Proceedings of Universities. Mechanical Engineering, 1967, no. 8, 31–35