Computational modeling of conjugated gasdynamic and thermomechanical processes in composite structures of high speed aircraft
Matematičeskoe modelirovanie i čislennye metody, no. 3 (2014), pp. 3-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article we propose an algorithm for the numerical simulation of conjugate gasdynamic and thermomechanical processes in composite structures of high-speed aircraft. The algorithm allows calculating all parameters of the three-dimensional gasdynamic flow near the surface of the aircraft, heat exchange on the surface, heat and mass transfer processes in the internal structure of thermodestructive polymer composite, as well as processes of composite construction thermodeformation, including the effects of changes in the elastic characteristics of the composite, variable thermal deformation, shrinkage caused by thermal degradation, building up interstitial gas pressure in the composite. An example of numerical simulation of conjugated processes in a model composite construction of high-speed aircraft illustrates the possibilities of the proposed algorithm
Keywords: Conjugated processes, aerogasdynamics, thermomechanics, hypersonic flows, heat and mass transfer, thermodestruction, composite materials, thermal deformation, pore pressure, thermal strains, bundle.
Mots-clés : composites
@article{MMCM_2014_3_a0,
     author = {Yu. I. Dimitrienko and M. N. Koryakov and A. A. Zakharov and A. Stroganov},
     title = {Computational modeling of conjugated gasdynamic and thermomechanical processes in composite structures of high speed aircraft},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {3--24},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2014_3_a0/}
}
TY  - JOUR
AU  - Yu. I. Dimitrienko
AU  - M. N. Koryakov
AU  - A. A. Zakharov
AU  - A. Stroganov
TI  - Computational modeling of conjugated gasdynamic and thermomechanical processes in composite structures of high speed aircraft
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2014
SP  - 3
EP  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MMCM_2014_3_a0/
LA  - ru
ID  - MMCM_2014_3_a0
ER  - 
%0 Journal Article
%A Yu. I. Dimitrienko
%A M. N. Koryakov
%A A. A. Zakharov
%A A. Stroganov
%T Computational modeling of conjugated gasdynamic and thermomechanical processes in composite structures of high speed aircraft
%J Matematičeskoe modelirovanie i čislennye metody
%D 2014
%P 3-24
%N 3
%U http://geodesic.mathdoc.fr/item/MMCM_2014_3_a0/
%G ru
%F MMCM_2014_3_a0
Yu. I. Dimitrienko; M. N. Koryakov; A. A. Zakharov; A. Stroganov. Computational modeling of conjugated gasdynamic and thermomechanical processes in composite structures of high speed aircraft. Matematičeskoe modelirovanie i čislennye metody, no. 3 (2014), pp. 3-24. http://geodesic.mathdoc.fr/item/MMCM_2014_3_a0/

[1] Anderson J.D., Hypersonic and high-temperature gas dynamics, 2th ed., American Institute of Aeronautics and Astronautics, Reston, Virginia, 2006, 232 pp.

[2] Lunev V.V., Hypersonic gasdynamics, Mashinostroenie Publ., Moscow, 1975, 330 pp.

[3] Tirskiy G.A., Hypersonic gasdynamics and heat and mass transfer in reentry spacecrafts and planetary probes, Fizmatlit Publ., Moscow, 2011, 548 pp.

[4] Lesin A.B., Lunev V.V., Fluid Mechanics, 1994, no. 2

[5] McNamara J., Friedmann P., “Aeroelastic and aerothermoelastic analysis of hypersonic vehicles: Current status and future trends”, 48th AIAA/ASME/ASCE/AHS/ASC Structures, 2007 www.mecheng.osu.edu/allowbreak lab/allowbreak cael/allowbreak sites/allowbreak default/allowbreak files/allowbreak AIAA-2007-2013

[6] Crowell A.R., McNamara J.J., Miller B.A., “Hypersonic aerothermoelastic response prediction of skin panels using computational fluid dynamic surrogates”, ASDJournal, 2:2 (2011), 3–30

[7] Kotenev V.P., Sysenko V.A., Mathematical Modeling and Numerical Methods, 2014, no. 1, 68–81

[8] Bratchev A.V., Zabarko D.A., Vatolina E.G., Korobkov A.A., Sakharov V.I., Proceedings of the Engineering Physics Institute, 2:12 (2009), 42–49

[9] Polezhaev Yu.V., Yurevich F.B., Thermal protection, Energiya Publ., Moscow, 1976, 368 pp.

[10] Dimitrienko Yu.I., Zakharov A.A., Koryakov M.N., Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2011, 136–150

[11] Dimitrienko Yu.I., Kotenev V.P., Zakharov A.A., The adaptive banded grid method for numerical simulation in gas dynamics, Fizmatlit Publ., Moscow, 2011, 280 pp.

[12] Dimitrienko Yu.I., Koryakov M.N., Zakharov A.A., Syzdykov E.K., Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2011, no. 2, 87–97

[13] Gilmanov A.N., The adaptive grid methods in gas dynamics problems, Fizmatlit Publ., Moscow, 2000, 248 pp.

[14] Dimitrienko Yu.I., Composite material mechanics under high temperature, Mashinostroenie Publ., Moscow, 1997, 366 pp.

[15] Dimitrienko Yu.I., “Thermal stresses and heat mass-transfer in ablating composite materials”, International Journal of Heat Mass Transfer, 38:1 (1995), 139–146

[16] Dimitrienko Yu.I., “Thermal stresses in ablative composite thin-walled structures under intensive heat flows”, International Journal of Engineering Science, 35:1 (1997), 15–31

[17] Dimitrienko Yu.I., “A structural thermomechanical model of textile composite materials at high temperatures”, Composite science and technologies, 59 (1999), 1041–1053

[18] Dimitrienko Yu.I., Minin V.V., Syzdykov E.K., Mechanics of Composite Materials and Structures, 17:1 (2011), 71–91

[19] Dimitrienko Yu.I., Minin V.V., Syzdykov E.K., Mathematical Modeling, 23:9 (2011), 14–32

[20] Dimitrienko Yu.I., Minin V.V., Syzdykov E.K., Computational Technologies, 17:2 (2012), 44–60

[21] Dimitrienko Yu.I., Zakharov A.A., Koriakov M.N., Syzdykov E.K., Engineering Journal: Science and Innovations, 2012

[22] Dimitrienko Yu.I., Tensor calculus, Vysshaya Shkola Publ., Moscow, 2001, 575 pp.

[23] Krasnov N.F., Aerodynamics, Vysshaya Shkola Publ., Moscow, 1980, 416 pp.