Finite element modulation of effective viscoelastic properties of unilateral composite materials
Matematičeskoe modelirovanie i čislennye metody, no. 2 (2014), pp. 28-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a method for calculating effective viscoelastic properties of composite materials under steady-state cyclical vibrations. The method is based on asymptotic averaging of periodic structures and finite-element solution of local problems of viscoelasticity in periodicity cells of composite materials. We provide examples of numerical simulation of viscoelastic properties for composites with unidirectional reinforcement, and of calculations of complex tensors of stress concentration in a periodicity cell. The paper presents a comparative analysis of dependencies of loss tangent of complex composite elasticity modulus on vibration frequencies obtained through FEA calculations and rough mixed formulae. We show that rough mixed formulae, often used for calculating dissipative properties of composite materials, can yield appreciable calculation errors.
Mots-clés : Composites, loss tangent
Keywords: viscoelasticity, stable-state vibrations, complex elasticity modulus, unilateral composites, asymptotic averaging method, finite element method, numerical simulation.
@article{MMCM_2014_2_a1,
     author = {Yu. I. Dimitrienko and E. A. Gubareva and S. V. Sborshchikov},
     title = {Finite element modulation of effective viscoelastic properties of unilateral composite materials},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {28--48},
     year = {2014},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2014_2_a1/}
}
TY  - JOUR
AU  - Yu. I. Dimitrienko
AU  - E. A. Gubareva
AU  - S. V. Sborshchikov
TI  - Finite element modulation of effective viscoelastic properties of unilateral composite materials
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2014
SP  - 28
EP  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MMCM_2014_2_a1/
LA  - ru
ID  - MMCM_2014_2_a1
ER  - 
%0 Journal Article
%A Yu. I. Dimitrienko
%A E. A. Gubareva
%A S. V. Sborshchikov
%T Finite element modulation of effective viscoelastic properties of unilateral composite materials
%J Matematičeskoe modelirovanie i čislennye metody
%D 2014
%P 28-48
%N 2
%U http://geodesic.mathdoc.fr/item/MMCM_2014_2_a1/
%G ru
%F MMCM_2014_2_a1
Yu. I. Dimitrienko; E. A. Gubareva; S. V. Sborshchikov. Finite element modulation of effective viscoelastic properties of unilateral composite materials. Matematičeskoe modelirovanie i čislennye metody, no. 2 (2014), pp. 28-48. http://geodesic.mathdoc.fr/item/MMCM_2014_2_a1/

[1] Dimitrienko Yu.I., Yakovlev N.O., Erasov V.S., Fedonyuk N.N., Sborschikov S.V., Gubareva E.A., Krylov V.D., Grigor'ev M.M., Prozorovskiy A.A., Composites and Nanostructures, 6:1 (2014), 32–48 | MR

[2] Dimitrienko Yu.I., Fedonyuk N.N., Gubareva E.A., Sborschikov S.V., Prozorovsky A.A., Science and Education. Electronic Scientific and Technical Journal, 2014, no. 10

[3] Sheldon Imaoka, “Analyzing Viscoelastic materials”, ANSYS Advantage, 2:4 (2008), 46–47

[4] Matzenmiller A., Gerlach S., “Micromechanical modeling of viscoelastic composites with compliant fiber.matrix bonding”, Computational Materials Science, 29:3 (2004), 283–300 | DOI

[5] Hashin Z., “Viscoelastic behavior of heterogeneous media”, J. Appl. Mech. Trans. ASME, 32E (1965), 630–636 | DOI

[6] Christensen R.M., Theory of viscoelasticity, Academic Press, New York, 1982, 356 pp.

[7] Bakhvalov N.S., Panasenko G.P., Avaraging of Processes in Periodic Media, Nauka Publ., Moscow, 1984, 356 pp. | MR | Zbl

[8] Pobedrya B.E., Mechanics of Composite Materials, Moscow State University Publ., Moscow, 1984, 324 pp. | Zbl

[9] Dimitrienko Yu.I., Sokolov A.P., Mathematical Modeling, 24:5 (2012), 3–20 | MR | Zbl

[10] Dimitrienko Yu.I., Sborshchikov S.V., Sokolov A.P., Shpakova Yu.I., “Computational Modeling of Failure of Textile Composites”, Computational Continuum Mechanics, 6:4 (2013), 389–402 | DOI

[11] Dimitrienko Yu.I., Limonov V.A., Mechanics of Composite Materials, 1988, no. 5, 797–805

[12] Michel J.C., Moulinec H., Suquet P., “Effective properties of composite materials with periodic microstructure: a computational approach”, Comput. Methods Appl. Mech. Engrg., 172 (1999), 109–143 | DOI | MR | Zbl

[13] Shibuya Y., “Evaluation of creep compliance of carbon-fiber-reinforced composites by homogenization theory”, JSME Int. J. Ser. A, 40 (1997), 313–319 | DOI

[14] Haasemann G., Ulbricht V., “Numerical evaluation of the viscoelastic and viscoplastic behavior of composites”, Technische Mechanik, 30 (2010), 122–135

[15] Masoumi S., Salehi M., Akhlaghi M., “Nonlinear Viscoelastic Analysis of Laminated Composite Plates. A Multi Scale Approach”, International Journal of Recent advances in Mechanical Engineering (IJMECH), 2:2 (2013), 11–18

[16] Pobedrya B.E. Dimitrienko Yu.I., Advance in Mechanics, 10:2 (1987), 97–137

[17] Dimitrienko Yu.I., Foundations of Mechanics of Rigid Body, v. 4, Continuum Mechanics, BMSTU Publ., Moscow, 2013, 624 с pp.

[18] Dimitrienko Yu.I., Tensor Analysis, т. 1, Continuum Mechanics, BMSTU Publ., Moscow, 2011

[19] Il`yushin A.A., Pobedrya B.E., Foundations of Mathematical Theory of Thermoviscoelasticity, Nauka Publ., Moscow, 1970, 356 pp. | MR

[20] Dimitrienko Yu.I., Gubareva E.A., Sborschikov S.V., Mathematical Modelling and Computational Methods, 2014, no. 1, 36–57

[21] Dimitrienko Yu.I., Sokolov A.P., Herald of the Bauman Moscow State University. Series: Natural Sciences, 2008, no. 2, 57–67

[22] Dimitrienko Yu.I., Sokolov A.P., “Informatsionnye tekhnologii”, Information Technologies, 2008, no. 8, 31–38

[23] Dimitrienko Yu.I., Sborschikov S.V., Sokolov A.P., Sadovnichiy D.N., Gafarov B.R., Composites and Nanostructures, 2013, no. 3, 35–51

[24] Dimitrienko Yu.I., Sborschikov S.V., Sokolov A.P., Composit Mechanics and Design, 19:3 (2013), 365–383