roperties of one-dimensional photonic crystal as a reflective or wave guiding structure when excited by H-polarization
Matematičeskoe modelirovanie i čislennye metody, no. 2 (2014), pp. 3-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers two-dimensional boundary value problem of propagation of plane electromagnetic wave through a periodic stratified medium with one-dimensional photonic crystal structure. The structure contains a finite number of slabs. Each periodicity cell consists of two layers with different real values of constant dielectric permittivity and different thicknesses. We show that under certain additional condition, which connects the angle of incidence of the plane wave, thicknesses of the layers, frequencies and dielectric permittivity of the layers, we can solve the problem completely and explicitly, the solution leading to simple expressions for both the field reflected from the structure, and the field which has passed through it. Herewith in case of H-polarized field, unlike E-polarization, properties of this medium depend on the ratio of thickness of the layers multiplied by their dielectric permittivity (with E-polarization they depend on thickness ratio only). As a result, depending on the field frequency, photonic crystal can behave as perfectly reflecting structure, while with the same ratio of thicknesses of the layers in case of E-polarization, it becomes a wave guiding structure, and vice-versa. We have compared numerical computations with those for cases of E-polarization.
Keywords: Photonic crystal, slab, uniform dielectric, plane wave, perfect reflector, ideal waveguide.
@article{MMCM_2014_2_a0,
     author = {V. F. Apel'tsin and T. Yu. Mozzhorina},
     title = {roperties of one-dimensional photonic crystal as a reflective or wave guiding structure when excited by {H-polarization}},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {3--27},
     year = {2014},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2014_2_a0/}
}
TY  - JOUR
AU  - V. F. Apel'tsin
AU  - T. Yu. Mozzhorina
TI  - roperties of one-dimensional photonic crystal as a reflective or wave guiding structure when excited by H-polarization
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2014
SP  - 3
EP  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MMCM_2014_2_a0/
LA  - ru
ID  - MMCM_2014_2_a0
ER  - 
%0 Journal Article
%A V. F. Apel'tsin
%A T. Yu. Mozzhorina
%T roperties of one-dimensional photonic crystal as a reflective or wave guiding structure when excited by H-polarization
%J Matematičeskoe modelirovanie i čislennye metody
%D 2014
%P 3-27
%N 2
%U http://geodesic.mathdoc.fr/item/MMCM_2014_2_a0/
%G ru
%F MMCM_2014_2_a0
V. F. Apel'tsin; T. Yu. Mozzhorina. roperties of one-dimensional photonic crystal as a reflective or wave guiding structure when excited by H-polarization. Matematičeskoe modelirovanie i čislennye metody, no. 2 (2014), pp. 3-27. http://geodesic.mathdoc.fr/item/MMCM_2014_2_a0/

[1] Apeltsin V.F., Mozzhorina T.Yu., Engineering Journal: Science and Innovations, 2013, no. 9

[2] Dimitrienko Yu.I., Sokolov A.P., Markevitch M.N., Science and Education. Electronic Scientific and Technical Journal, 2013, no. 1 | DOI

[3] Dimitrienko Yu.I., Sokolov A.P., Markevitch M.N., Science and Education. Electronic Scientific and Technical Journal, 2013, no. 10 | DOI

[4] Joannopoulos J.D., Meade R.D., Winn J.N., “Photonic Crystals: Molding the Flow of Light”, Princeton Univ. Press, 1995, 184–304

[5] Sakoda R., Optical properties of photonic crystals, Springer-Verlag, Berlin, 2001, 20 pp.

[6] Zarubin V.S., Kuvyrkin G.N., Mathematical Modeling and Computational Methods, 2014, no. 1, 5–17

[7] Bogolyubov A.N., Butkarev I.A., Dementyeva Yu.S., Moscow State University Bulletin. Series 3. Phisics. Astronomy, 2010, no. 6, 3–8

[8] Dementyeva Yu.S., Numerical Methods and Programming, 12 (2011), 375–378