@article{MMCM_2014_1_a8,
author = {S. S. Gavryushin},
title = {Numerical analyses of the processes of thin elastic shells nonlinear deformation},
journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
pages = {115--130},
year = {2014},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMCM_2014_1_a8/}
}
S. S. Gavryushin. Numerical analyses of the processes of thin elastic shells nonlinear deformation. Matematičeskoe modelirovanie i čislennye metody, no. 1 (2014), pp. 115-130. http://geodesic.mathdoc.fr/item/MMCM_2014_1_a8/
[1] Zienkiewicz O.C., The Finite Element Method, 3rd ed., McGraw-Hill, New York, 1977, 787 pp. | Zbl
[2] Grigolyuk E.I., Lopanitsyn E.A., Finite deflections, stability and supercritical behavior of thin shallow shells, Moscow State University of Mechanical Engineering Publ., Moscow, 2004, 162 pp.
[3] Marguerre K. Zur, “Theory of curved plate of large deformation”, Proc. 5th Intern. Congr. Appl. Mech. Cambridge, Massachusetts, 1938, 93–101 | Zbl
[4] Reissner E., “On axisymmetrical deformations of thin shells of revolution”, Proc. 3rd Sympos. Appl. Math. New York, McGrow-Hill, v. 3, 1950, 27–52 | DOI | MR | Zbl
[5] Timoshenko S.P., Voinovsky-Kriger S., Plates and shells, Fizmatgiz Publ., Moscow, 1963, 635 pp.
[6] Vol'mir A.S., Stability of Deformable Systems, Fizmatgiz Publ., Moscow, 1967, 984 pp.
[7] Grigolyuk E.I., Kabanov V.V., Stability of shells, Nauka Publ., Moscow, 1978, 359 pp. | MR
[8] Grigoliuk E.I., Mamai V.I., Nonlinear deformation of thin-walled structures, Fizmatgiz Publ., Moscow, 1997, 272 pp. | MR | Zbl
[9] Kornishin M.S., Nonlinear problems of the theory of plates and shallow shells and solution methods, Nauka Publ., Moscow, 1964, 192 pp. | Zbl
[10] Filin A.P., Elements of the theory of shells, Stroyizdat Publ., Leningrad, 1987, 384 pp.
[11] Vorovich I.I., Minakova N.I., Results in Science and Technology. Mechanics of deformable solids, 7 (1973), 5–86
[12] Grigorenko Ya.M., Gulyaev V.I., Applied mechanics, 27 (1991), 3–23 | MR | Zbl
[13] Mescall J., “Numerical solution of nonlinear equations for shell of revolution”, AIAA J., 4:11 (1966), 2041–2043 | DOI | Zbl
[14] Valishvili N.V., J. Appl. Math. Mech., 32:6 (1968), 1089–1096 | DOI
[15] Shapovalov L.D., Mechanics of solids, 1969, no. 1, 56–63
[16] Valishvili N.V., Methods for calculating the shells of revolution on a computer, Mashinostroenie Publ., Moscow, 1976, 278 pp.
[17] Riks E., “The application of Newton's method to the problem of elastic stability”, J. Appl. Mech., 39 (1972), 1060–1065 | DOI | Zbl
[18] Crisfield M.A., “A fast Incremental/Iterative solution procedure that handles “snapthrought””, Comput. and Structures, 13:1 (1981), 55–62 | DOI | Zbl
[19] Grigolyuk E.I., Shalashilin V.I., Nonlinear deformation problems: The method of the parameter continuation in nonlinear problems of mechanics of deformable bodies, Nauka Publ., Moscow, 1988, 232 pp. | MR | Zbl
[20] Gavryushin S.S., Proc. Acad. Sci. USSR. Mechanics of solids, 1994, no. 1, 109–119
[21] Arnol'd V.I., Catastrophe theory, Nauka Publ., Moscow, 1990, 128 pp. | MR
[22] Vainberg M. M., Trenogin V. A., The theory of branching of nonlinear equations solutions, Nauka Publ., Moscow, 1969, 527 pp. | MR
[23] Gavriushin S.S., Baryshnikova O.O., Izvestiia Vuzov. Mashinostroenie – Univ. Proceed. Mechanic engineering, 2000, no. 1, 29–37
[24] Gavryushin S.S., Mekhatronika – Mechatronics, 2000, no. 5, 16–18
[25] Ali Abdul Karim, Gavryushin S.S., Izvestiya vuzov. Mashinostroenie – Univ. Proc. Mechanic engineering, 2005, no. 8, 17–23
[26] Gavryushin S.S., Problems of applied mechanics, dynamics and strength of machines, 2005, 114–129
[27] Gavryushin S.S., Baryshnikova O.O., Boriskin O.F., Numerical methods in dynamics and strength of machines, Bauman MSTU Publ., Moscow, 2012, 492 pp.