Numerical analyses of the processes of thin elastic shells nonlinear deformation
Matematičeskoe modelirovanie i čislennye metody, no. 1 (2014), pp. 115-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Theoretical bases of methods and algorithms developed for the analysis of stability and post critical behavior of thin elastic shells. The problem of numerical analysis the nonlinear deformation processes of spherical domes under the uniform external pressure is discusses. Describes the computer algorithm based on the parameter continuation method, using the technique of subspaces of the of the control parameter subspace changing. Efficiency of the proposed approach is illustrated by same examples.
Keywords: Flexible shell, nonlinear deformation, stability, post critical behavior, numerical algorithm.
@article{MMCM_2014_1_a8,
     author = {S. S. Gavryushin},
     title = {Numerical analyses of the processes of thin elastic shells nonlinear deformation},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {115--130},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2014_1_a8/}
}
TY  - JOUR
AU  - S. S. Gavryushin
TI  - Numerical analyses of the processes of thin elastic shells nonlinear deformation
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2014
SP  - 115
EP  - 130
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MMCM_2014_1_a8/
LA  - ru
ID  - MMCM_2014_1_a8
ER  - 
%0 Journal Article
%A S. S. Gavryushin
%T Numerical analyses of the processes of thin elastic shells nonlinear deformation
%J Matematičeskoe modelirovanie i čislennye metody
%D 2014
%P 115-130
%N 1
%U http://geodesic.mathdoc.fr/item/MMCM_2014_1_a8/
%G ru
%F MMCM_2014_1_a8
S. S. Gavryushin. Numerical analyses of the processes of thin elastic shells nonlinear deformation. Matematičeskoe modelirovanie i čislennye metody, no. 1 (2014), pp. 115-130. http://geodesic.mathdoc.fr/item/MMCM_2014_1_a8/

[1] Zienkiewicz O.C., The Finite Element Method, 3rd ed., McGraw-Hill, New York, 1977, 787 pp. | Zbl

[2] Grigolyuk E.I., Lopanitsyn E.A., Finite deflections, stability and supercritical behavior of thin shallow shells, Moscow State University of Mechanical Engineering Publ., Moscow, 2004, 162 pp.

[3] Marguerre K. Zur, “Theory of curved plate of large deformation”, Proc. 5th Intern. Congr. Appl. Mech. Cambridge, Massachusetts, 1938, 93–101 | Zbl

[4] Reissner E., “On axisymmetrical deformations of thin shells of revolution”, Proc. 3rd Sympos. Appl. Math. New York, McGrow-Hill, v. 3, 1950, 27–52 | DOI | MR | Zbl

[5] Timoshenko S.P., Voinovsky-Kriger S., Plates and shells, Fizmatgiz Publ., Moscow, 1963, 635 pp.

[6] Vol'mir A.S., Stability of Deformable Systems, Fizmatgiz Publ., Moscow, 1967, 984 pp.

[7] Grigolyuk E.I., Kabanov V.V., Stability of shells, Nauka Publ., Moscow, 1978, 359 pp. | MR

[8] Grigoliuk E.I., Mamai V.I., Nonlinear deformation of thin-walled structures, Fizmatgiz Publ., Moscow, 1997, 272 pp. | MR | Zbl

[9] Kornishin M.S., Nonlinear problems of the theory of plates and shallow shells and solution methods, Nauka Publ., Moscow, 1964, 192 pp. | Zbl

[10] Filin A.P., Elements of the theory of shells, Stroyizdat Publ., Leningrad, 1987, 384 pp.

[11] Vorovich I.I., Minakova N.I., Results in Science and Technology. Mechanics of deformable solids, 7 (1973), 5–86

[12] Grigorenko Ya.M., Gulyaev V.I., Applied mechanics, 27 (1991), 3–23 | MR | Zbl

[13] Mescall J., “Numerical solution of nonlinear equations for shell of revolution”, AIAA J., 4:11 (1966), 2041–2043 | DOI | Zbl

[14] Valishvili N.V., J. Appl. Math. Mech., 32:6 (1968), 1089–1096 | DOI

[15] Shapovalov L.D., Mechanics of solids, 1969, no. 1, 56–63

[16] Valishvili N.V., Methods for calculating the shells of revolution on a computer, Mashinostroenie Publ., Moscow, 1976, 278 pp.

[17] Riks E., “The application of Newton's method to the problem of elastic stability”, J. Appl. Mech., 39 (1972), 1060–1065 | DOI | Zbl

[18] Crisfield M.A., “A fast Incremental/Iterative solution procedure that handles “snapthrought””, Comput. and Structures, 13:1 (1981), 55–62 | DOI | Zbl

[19] Grigolyuk E.I., Shalashilin V.I., Nonlinear deformation problems: The method of the parameter continuation in nonlinear problems of mechanics of deformable bodies, Nauka Publ., Moscow, 1988, 232 pp. | MR | Zbl

[20] Gavryushin S.S., Proc. Acad. Sci. USSR. Mechanics of solids, 1994, no. 1, 109–119

[21] Arnol'd V.I., Catastrophe theory, Nauka Publ., Moscow, 1990, 128 pp. | MR

[22] Vainberg M. M., Trenogin V. A., The theory of branching of nonlinear equations solutions, Nauka Publ., Moscow, 1969, 527 pp. | MR

[23] Gavriushin S.S., Baryshnikova O.O., Izvestiia Vuzov. Mashinostroenie – Univ. Proceed. Mechanic engineering, 2000, no. 1, 29–37

[24] Gavryushin S.S., Mekhatronika – Mechatronics, 2000, no. 5, 16–18

[25] Ali Abdul Karim, Gavryushin S.S., Izvestiya vuzov. Mashinostroenie – Univ. Proc. Mechanic engineering, 2005, no. 8, 17–23

[26] Gavryushin S.S., Problems of applied mechanics, dynamics and strength of machines, 2005, 114–129

[27] Gavryushin S.S., Baryshnikova O.O., Boriskin O.F., Numerical methods in dynamics and strength of machines, Bauman MSTU Publ., Moscow, 2012, 492 pp.