Near-resonant regimes of a moving load in the plane-strain problem for a coated elastic half-space
Matematičeskoe modelirovanie i čislennye metody, no. 1 (2014), pp. 57-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with a plane strain problem of steady motion of a vertical impulse load along the surface of a coated elastic half-space. The near-resonant regimes of the moving load are investigated in the near-surface vicinity relying on the long-wave asymptotic model for the Rayleigh wave in a coated half-space. The classification of regimes is obtained depending on the relation between the speed of the moving load and the resonant Rayleigh wave speed along with the linear coefficient of dispersion of the coating. The cases when the radiation from the moving source occurs are pointed out. The results could be generalized to coatings with more sophisticated properties including the effects of anisotropy, viscosity and pre-stress.
Keywords: Moving load, asymptotic model, rayleigh wave, thin coating.
@article{MMCM_2014_1_a4,
     author = {Yu. D. Kaplunov and T. V. Oblakova and D. A. Prikazchikov},
     title = {Near-resonant regimes of a moving load in the plane-strain problem for a coated elastic half-space},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {57--67},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2014_1_a4/}
}
TY  - JOUR
AU  - Yu. D. Kaplunov
AU  - T. V. Oblakova
AU  - D. A. Prikazchikov
TI  - Near-resonant regimes of a moving load in the plane-strain problem for a coated elastic half-space
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2014
SP  - 57
EP  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MMCM_2014_1_a4/
LA  - ru
ID  - MMCM_2014_1_a4
ER  - 
%0 Journal Article
%A Yu. D. Kaplunov
%A T. V. Oblakova
%A D. A. Prikazchikov
%T Near-resonant regimes of a moving load in the plane-strain problem for a coated elastic half-space
%J Matematičeskoe modelirovanie i čislennye metody
%D 2014
%P 57-67
%N 1
%U http://geodesic.mathdoc.fr/item/MMCM_2014_1_a4/
%G ru
%F MMCM_2014_1_a4
Yu. D. Kaplunov; T. V. Oblakova; D. A. Prikazchikov. Near-resonant regimes of a moving load in the plane-strain problem for a coated elastic half-space. Matematičeskoe modelirovanie i čislennye metody, no. 1 (2014), pp. 57-67. http://geodesic.mathdoc.fr/item/MMCM_2014_1_a4/

[1] Achenbach J.D., Keshava S.P., “Free waves in a plate supported by a semiinfinite continuum”, ASME J. Appl. Mech., 34:2 (1967), 397–404 | DOI

[2] Achenbach J.D., Keshava S.P., Herrmann G., “Moving load on a plate resting on an elastic half-space”, ASME J. Appl. Mech., 34:6 (1967), 910–914 | DOI

[3] Tiersten H.F., “Elastic surface waves guided by thin films”, J. Appl. Phys., 40 (1969), 770–789

[4] Dai H.-H., Kaplunov J., Prikazchikov D.A., “A long wave model for the surface elastic wave in a coated half space”, Proc. R. Soc. A, 466 (2010), 3097–3116 | DOI | MR | Zbl

[5] Bovik P., “A comparison between the Tiersten model and O(h) boundary conditions for elastic surface waves guided by thin layers”, ASME J. Appl. Mech., 63 (1996), 162–167 | DOI | Zbl

[6] Zakharov D.D., PMM – J. Appl. Math. Mech., 74:3 (2010), 403–418 | MR | Zbl

[7] Steigmann D.J., Ogden R.W., “Surface waves supported by thin film/substrate interactions”, IMA J. Appl. Math., 72 (2007), 730–747 | DOI | MR | Zbl

[8] Shuvalov A.L., Every A.G., “On the long-wave onset of dispersion of the surface-wave velocity in coated solids”, Wave Motion, 45 (2008), 857–863 | DOI | MR | Zbl

[9] Schulenberger J.R., Wilcox C.H., “The limiting absorption principle and spectral theory for steady-state wave propagation in inhomogeneous anisotropic media”, Arch. Ration. Mech. Anal., 41 (1971), 46–65 | MR | Zbl

[10] Vorovich I.I., Babeshko V.A., Dynamic mixed problems of elasticity theory for non-classical areas, Nauka Publ., Moscow, 1979, 320 pp. | MR

[11] Babeshko V.A., Glushkov E.V., Zinchenko Zh.F., Dynamics of heterogeneous linearly elastic media, Nauka Publ., Moscow, 1989, 343 pp.

[12] Kalinchuk V.V., Belyankov T.I., Surface dynamics of inhomogeneous media, FIZMATLIT Publ., Moscow, 2009, 312 pp. | Zbl

[13] Kaplunov J., Zakharov A., Prikazchikov D.A., “Explicit models for elastic and piezoelastic surface waves”, IMA J. Appl. Math., 71 (2006), 768–782 | DOI | MR | Zbl

[14] Kaplunov J., Nolde E., Prikazchikov`D.A., “A revisit to the moving load problem using an asymptotic model for the Rayleigh wave”, Wave Motion, 47 (2010), 440–451 | DOI | MR | Zbl

[15] Kaplunov J., Prikazchikov D.A., Erbas B., Sahin O., “On a 3D moving load problem for an elastic half-space”, Wave Motion, 50 (2013), 1229–1238 | DOI | MR

[16] Erbas B., Kaplunov J., Prikazchikov D.A., “The Rayleigh wave field in mixed problems for a half-plane”, IMA J. Appl. Math., 78:5 (2013), 1078–1086 | DOI | MR | Zbl

[17] Kaplunov J., Prikazchikov D.A., “Explicit models for surface, interfacial and edge waves in elastic solids”, Dynamic localization phenomena in elasticity, acoustics and electromagnetis, CISM Lecture Notes, 547, eds. Craster R., Kaplunov J., Springer, 2013, 73–114 | MR

[18] Cole J., Huth J., “Stresses produced in a half plane by moving loads”, ASME J. Appl. Mech., 25 (1958), 433–436 | MR | Zbl

[19] Abramowitz M., Stegun I.A., Handbook of mathematical functions, Dover, New York, 1982, 1046 pp.

[20] Muravskiy G.B., Izv. AN SSSR. Mekhanika tverdogo tela – Proc. Acad. Sci. USSR. Mechanics of rigid body, 5 (1981), 167–179

[21] Alenitsyn A.G., PMM – J. Appl. Math. Mech., 27 (1963), 547–550 | MR | Zbl