Asymptotic theory of constructive-orthotropic plates with two-periodic structures
Matematičeskoe modelirovanie i čislennye metody, no. 1 (2014), pp. 36-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The theory of thin constructive-orthotropic plates with a two-periodic structure was suggested. Examples of such structures are honeycomb sandwich panels and backed plates. The theory is based on equations of a three-dimensional elasticity theory with the help of asymptotic expansions in terms of a small parameter being the ratio of a plate thickness and a characteristic length without introducing any hypotheses on a distribution character for displacements and stresses through the thickness. Local problems were formulated for finding stresses in all structural elements of a plate. It was shown that the global (averaged by the certain rules) equations of the plate theory are similar to equations of the Kirchhoff-Love plate theory, but they differs by a presence of three-order derivatives of longitudinal displacements. The method developed allows to calculate all 6 components of the stress tensor including transverse normal stresses and stresses of interlayer shear. For this, local problems should be solved numerically up to the third approximation. The example was demonstrated for finite-element solving the local problems of the zero approximation for a cellular structure, which showed that the developed method for plate calculation and its numerical realization are sufficiently effective - they allow us to conduct computations for complex constructive-orthotropic plates with very different values of elastic characteristics.
Keywords: multilayer plates, two-periodic structure, honeycomb sandwich panels constructive-orthotropic plates, two-periodic structure, asymptotic expansions, local problems.
@article{MMCM_2014_1_a3,
     author = {Yu. I. Dimitrienko and E. A. Gubareva and S. V. Sborshchikov},
     title = {Asymptotic theory of constructive-orthotropic plates with two-periodic structures},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {36--56},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2014_1_a3/}
}
TY  - JOUR
AU  - Yu. I. Dimitrienko
AU  - E. A. Gubareva
AU  - S. V. Sborshchikov
TI  - Asymptotic theory of constructive-orthotropic plates with two-periodic structures
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2014
SP  - 36
EP  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MMCM_2014_1_a3/
LA  - ru
ID  - MMCM_2014_1_a3
ER  - 
%0 Journal Article
%A Yu. I. Dimitrienko
%A E. A. Gubareva
%A S. V. Sborshchikov
%T Asymptotic theory of constructive-orthotropic plates with two-periodic structures
%J Matematičeskoe modelirovanie i čislennye metody
%D 2014
%P 36-56
%N 1
%U http://geodesic.mathdoc.fr/item/MMCM_2014_1_a3/
%G ru
%F MMCM_2014_1_a3
Yu. I. Dimitrienko; E. A. Gubareva; S. V. Sborshchikov. Asymptotic theory of constructive-orthotropic plates with two-periodic structures. Matematičeskoe modelirovanie i čislennye metody, no. 1 (2014), pp. 36-56. http://geodesic.mathdoc.fr/item/MMCM_2014_1_a3/

[1] Grigolyuk E.I., Kulikov G.M., Mekhanika kompozitsionnykh materialov – Composite Mechanics and Design, 1988, no. 4, 698–704

[2] Sheshenin S.V., “Proc. of the Russ. Acad. Sci. Mech. Rigid Body”, Izv. RAN. MTT, 2006, no. 6, 71–79

[3] Sheshenin S.V., Khodos O.A., Vychislitel'naya mekhanika sploshnoi sredy – Computational Continuum Mechanics, 4:2 (2011), 128–139

[4] Zveryaev E.M., Makarov G.I., PMM, 72:2 (2008), 308–321 | MR

[5] Zveriaev E. M., PMM, 67:3 (2003), 472–483 | MR

[6] Kohn R.V., Vogelius M. A, “A new model of thin plates with rapidly varying thickness”, Int. J. Solids and Struct., 20:4 (1984), 333–350 | DOI | Zbl

[7] Panasenko G.P., Reztsov M.V., Dokl. AN SSSR – Reports of Acad. Sci. USSR, 294:5 (1987), 1061–1065 | MR | Zbl

[8] Levinski T., Telega J.J., Plates, laminates and shells. Asymptotic analysis and homogenization, World Sci. Publ., Singapore; London, 2000, 739 pp. | MR

[9] Kolpakov A.G., Homogenized models for thin-walled nonhomogeneous structures with initial stresses, Springer Verlag, Berlin, 2004, 228 pp.

[10] Pobedrya B.E., Mechanics of composite materials, Lomonosov MSU Publ., Moscow, 1984, 336 pp. | Zbl

[11] Bakhvalov N.S., Panasenko G.P., Averaging of processes in periodic media, Nauka Publ., Moscow, 1984, 352 pp. | MR | Zbl

[12] Sanches-Palensiya E., Non-uniform media and theory of oscillations, Mir Publ., Moscow, 1984, 472 pp. | MR

[13] Dimitrienko Yu.I., Kashkarov A.V., Vestnik MGTU im. N.E. Baumana. Seriya Estestvennye Nauki – Herald of Bauman Moscow State Technical University, Natural Science Series, 2002, no. 2, 95–108

[14] Dimitrienko Yu.I., Sokolov A.P., Vestnik MGTU im. N.E. Baumana. Seriya Estestvennye Nauki – Herald of Bauman Moscow State Technical University, Natural Science Series, 2008, no. 2, 57–67

[15] Dimitrienko Yu.I., Sokolov A.P., Izvestiya Rossiyskoi akademii nauk. Seriya fizicheskaya – Proc. Russ. Acad. Sci., 75:2 (2011), 1549–1554 | Zbl

[16] Dimitrienko Yu.I., Sokolov A.P., Matematicheskoe modelirovanie – Mathematical Modeling, 21:4 (2009), 96–110

[17] Dimitrienko Yu.I., “A structural thermomechanical model of textile composite materials at high temperatures”, Composite science and technologies, 59 (1999), 1041–1053 | DOI

[18] Dimitrienko Yu.I., Sborshchikov S.V., Sokolov A.P., Mekhanika kompo-zitsionnykh materialov i konstruktsiy – Composite Mechanics and design, 19:3 (2013), 365–383

[19] Dimitrienko Yu.I., Sborshchikov S.V., Sokolov A.P., Shpakova Yu.V., Vychislitel'naya mekhanika sploshnoi sredy – Computational continuum mechanics, 6:4 (2013), 389–402

[20] Dimitrienko Yu.I., Vestnik MGTU im. N.E. Baumana. Seriya Estestvennye nauki – Herald of Bauman Moscow State Technical University, Natural Scence Series, 2013, no. 3, 86–100

[21] Dimitrienko Yu.I., Yakovlev D.O., Inzhenernyi zhurnal: nauka i innovatsii – Engineering Journal: Science and Innovation, 2013, no. 12 engjournal.ru/catalog/mathmodel/technic/899.html

[22] Dimitrienko Yu.I., Continuum mechanics, v. 1, Tensor analysis, Moscow, Bauman MSTU Publ., Moscow, 2011, 367 pp.

[23] Dimitrienko Yu.I., Continuum mechanics, v. 4, Fundamentals of solid mechanics, Moscow, Bauman MSTU Publ., Moscow, 2013, 624 pp.