Numerical-analytical method of solving two-dimensional problems of natural convection in a closed cavity
Matematičeskoe modelirovanie i čislennye metody, no. 1 (2014), pp. 18-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author offers a method (PGRM) of numerical-analytical solving the equation system in partial derivatives describing the natural thermal convection in the complicated-shaped dimensional cavity with arbitrary boundary conditions. The new approach is based on a combination of Petrov–Galerkin method and R-functions (Rvachev functions) and makes it possible to obtain temperature, vortex and current functions satisfying the boundary conditions in the form of expansions in certain bases. The coordinated choice of bases provides a natural way to approximate the boundary conditions for the flow function. Unsteady convection problems are solved by combining PGRM and Rothe method.
Keywords: natural convection, the method of R-functions, Petrov–Galerkin method.
@article{MMCM_2014_1_a2,
     author = {M. A. Basarab},
     title = {Numerical-analytical method of solving two-dimensional problems of natural convection in a closed cavity},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {18--35},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2014_1_a2/}
}
TY  - JOUR
AU  - M. A. Basarab
TI  - Numerical-analytical method of solving two-dimensional problems of natural convection in a closed cavity
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2014
SP  - 18
EP  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MMCM_2014_1_a2/
LA  - ru
ID  - MMCM_2014_1_a2
ER  - 
%0 Journal Article
%A M. A. Basarab
%T Numerical-analytical method of solving two-dimensional problems of natural convection in a closed cavity
%J Matematičeskoe modelirovanie i čislennye metody
%D 2014
%P 18-35
%N 1
%U http://geodesic.mathdoc.fr/item/MMCM_2014_1_a2/
%G ru
%F MMCM_2014_1_a2
M. A. Basarab. Numerical-analytical method of solving two-dimensional problems of natural convection in a closed cavity. Matematičeskoe modelirovanie i čislennye metody, no. 1 (2014), pp. 18-35. http://geodesic.mathdoc.fr/item/MMCM_2014_1_a2/

[1] Rouch P., Computational hydrodynamics, Mir Publ., Moscow, 1980, 618 pp.

[2] Patankar S.V., Numerical solution of problems of heat conductivity and convectional heat exchange in the canal current, MPEI Publ., Moscow, 2003, 312 pp.

[3] Samarsky A.A., Vabishchevich P.N., Numerical methods for solving problems of convection- diffusion, URSS Publ., Moscow, 2009, 248 pp.

[4] Shi D., Numerical methods in problems of heat exchange, Mir Publ., Moscow, 1988, 544 pp.

[5] De Vahl Davis G., “Finite Difference Methods for Natural and Mixed Convection in Enclosures”, Heat Transfer, 1, Hemisphere Publ. Corp., Washington, 1986, 101–109

[6] Fletcher K., Numerical methods based on Galerkin method, Mir Publ., Moscow, 1988, 352 pp.

[7] Volkov K.N., Emelyanov V.N., Computational technologies in problems of liquid and gas mechanics, Fizmatlit Publ., Moscow, 2012, 468 pp.

[8] Liu G.R., Mesh Free Methods: Moving Beyond the Finite Element Method, CRC Press, 2009, 792 pp. | MR | Zbl

[9] Katz A.J., Meshless Methods for Computational Fluid Dynamics, Ph.D Thesis, Dept. of Aeronautics and Astronautics, Stanford University, 2009, 131 pp.

[10] Rvachev V.L., Theory of R-function and some of its applications, Naukova dumka Publ, Kiev, 1982, 552 pp. | MR | Zbl

[11] Kravchenko V.F., Basarab M.A., Boolean algebra and approximation methods in boundary problems of electrodynamics, Fizmatlit Publ., Moscow, 2004, 308 pp. | Zbl

[12] Tsukanov I., Shapiro V., Zhang S. A, “Meshfree Method for Incompressible Fluid Dynamics Problems”, International Journal for Numerical Methods in Engineering, 58 (2003), 127–158 | DOI | Zbl

[13] Basarab M.A., “Solving stationary two-dimensional problems of natural convection in enclosed cavities by the R-functions method”, Inzhenernyi zhurnal: nauka i innovatsii – Engineering journal:science and innovations, 2013, no. 11(23), 63

[14] Kantorovich L.V., Krylov V.I., Approximate methods of higher analysis, Fizmatlit Publ., Moscow–Leningrad, 1962, 708 pp. | MR

[15] Basarab M.A., Kravchenko V.F., Matveev V.A., Mathematical modeling of physical processes in gyroscopy, Radiotekhnika Publ., Moscow, 2005, 176 pp.

[16] De Vahl Davis G., “Natural Convection of Air in a Square Cavity: A Benchmark Numerical Solution”, International Journal of Numerical Methods in Fluids, 3 (1983), 249–264 | DOI | Zbl