Special features of mathematical modeling of technical instruments
Matematičeskoe modelirovanie i čislennye metody, no. 1 (2014), pp. 5-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper gives grounds for applying mathematical modeling in the development and improvement of modern technical instruments and systems. It also shows typical stages of mathematical modeling and the sequence of their execution. The authors describe special features and basic methods in quantitative analysis of mathematical models of systems with distributed parameters (in continuous systems).
Keywords: mathematical modeling, computing experiment, a continuous system.
@article{MMCM_2014_1_a1,
     author = {V. S. Zarubin and G. N. Kuvyrkin},
     title = {Special features of mathematical modeling of technical instruments},
     journal = {Matemati\v{c}eskoe modelirovanie i \v{c}islennye metody},
     pages = {5--17},
     year = {2014},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMCM_2014_1_a1/}
}
TY  - JOUR
AU  - V. S. Zarubin
AU  - G. N. Kuvyrkin
TI  - Special features of mathematical modeling of technical instruments
JO  - Matematičeskoe modelirovanie i čislennye metody
PY  - 2014
SP  - 5
EP  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MMCM_2014_1_a1/
LA  - ru
ID  - MMCM_2014_1_a1
ER  - 
%0 Journal Article
%A V. S. Zarubin
%A G. N. Kuvyrkin
%T Special features of mathematical modeling of technical instruments
%J Matematičeskoe modelirovanie i čislennye metody
%D 2014
%P 5-17
%N 1
%U http://geodesic.mathdoc.fr/item/MMCM_2014_1_a1/
%G ru
%F MMCM_2014_1_a1
V. S. Zarubin; G. N. Kuvyrkin. Special features of mathematical modeling of technical instruments. Matematičeskoe modelirovanie i čislennye metody, no. 1 (2014), pp. 5-17. http://geodesic.mathdoc.fr/item/MMCM_2014_1_a1/

[1] Zarubin V.S., Mathematical modeling in engineering, Bauman MSTU Publ., Moscow, 2010, 496 pp.

[2] Norenkov I.P., Kuz'mik P.K., Information support of science-intensive products. CALS-technologies, Bauman MSTU Publ., Moscow, 2002, 319 pp.

[3] Myshkis A.D., Elements of mathematical model theory, Nauka Publ., Moscow, 1994, 192 pp. | Zbl

[4] Samarsky A.A., Mikhailov A.P., Mathematical modeling. Ideas. Methods. Examples, Nauka Publ., Moscow, 1997, 320 pp. | MR | Zbl

[5] Zarubin V.S., Kuvyrkin G.N., Mathematical models in mechanics and electrodynamics of continuous system, Math. Model. in Techn. Series, Bauman MSTU Publ., Moscow, 2008, 512 pp.

[6] Dimitrienko Yu.I., Univeral laws in mechanics and electrodynamics of continuous systems. Mechanics of continuous system, v. 2, Bauman MSTU Publ., Moscow, 2011, 560 pp.

[7] Belotserkovsky O.M., Numerical modeling in mechanics of continuous systems, Nauka Publ., Moscow, 1984, 520 pp. | MR

[8] Galanin M.P., Savenkov E.B., Methods of numerical analysis of mathematical models, Math. Model. in Techn. Series, Bauman MSTU Publ., Moscow, 2010, 592 pp.

[9] Vlasova E.A., Zarubin V.S., Kuvyrkin G.N., Approximate methods in mathematical physics, Bauman MSTU Publ., Moscow, 2001, 700 pp.

[10] Voevodin V.V., Computational fundamentals of linear algebra, Nauka Publ., Moscow, 1977, 304 pp. | MR | Zbl

[11] Attetkov A.V., Zarubin V.S., Kanatnikov A.N., Methods of optimization, INFRA-M Publ., Moscow, RIOR, 2012, 270 pp.

[12] Vasil'ev F.P., Numerical methods of extremal problems solving, Nauka Publ., Moscow, 1988, 552 pp. | MR

[13] Zarubin V.S., Selivanov V.V., Variational and numerical methods in mechanics of continuous system, Bauman MSTU Publ., Moscow, 1993, 360 pp.

[14] Zarubin V.S., Engineering methods of solving problems of heat conductivity, Energoatomizdat Publ., Moscow, 1983, 328 pp.

[15] Marchuk G.I., Agoshkov V.I., Introduction in projection grid methods, Nauka Publ., Moscow, 1981, 416 pp. | MR | Zbl

[16] Zarubin V.S., Kuvyrkin G.N., Informatsionnye tekhnologii – Information technologies, 1997, no. 3, 18–20

[17] Voevodin V.V., Mathematical models and methods in parallel processes, Nauka Publ., Moscow, 1986, 296 pp. | Zbl

[18] Hockney R., Jesshope K., Parallel computers, Transl. from Engl., Radio i svyaz' Publ., Moscow, 1986, 392 pp.

[19] Ortega Dzh., Introduction in parallel and vector methods of solving linear systems, Transl. from Engl., Mir Publ., Moscow, 1991, 367 pp. | MR

[20] Nishimura N., “Fast multipole accelerated boundary integral equation methods”, Appl. Mech. Rev., 21 (2002), 299–324 | DOI

[21] Liu Y.J., Nishimura N., “The fast multipole boundary element method for potential problem: A tutorial”, Engineering Analysis with Boundary Elements, 30 (2006), 371–381 | DOI | Zbl