Maximum Principles for Minimal surfaces in R3 Having noncompact boundary and a uniqueness theorem for the helicoid.
Manuscripta mathematica, Tome 87 (1995) no. 4, pp. 417-434.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : helicoidal surface, minimal surface
@article{MM2_1995__87_4_156097,
     author = {Friedrich Tomi and Jaime Ripoll},
     title = {Maximum {Principles} for {Minimal} surfaces in {R3} {Having} noncompact boundary and a uniqueness theorem for the helicoid.},
     journal = {Manuscripta mathematica},
     pages = {417--434},
     publisher = {mathdoc},
     volume = {87},
     number = {4},
     year = {1995},
     zbl = {0838.53014},
     url = {http://geodesic.mathdoc.fr/item/MM2_1995__87_4_156097/}
}
TY  - JOUR
AU  - Friedrich Tomi
AU  - Jaime Ripoll
TI  - Maximum Principles for Minimal surfaces in R3 Having noncompact boundary and a uniqueness theorem for the helicoid.
JO  - Manuscripta mathematica
PY  - 1995
SP  - 417
EP  - 434
VL  - 87
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM2_1995__87_4_156097/
ID  - MM2_1995__87_4_156097
ER  - 
%0 Journal Article
%A Friedrich Tomi
%A Jaime Ripoll
%T Maximum Principles for Minimal surfaces in R3 Having noncompact boundary and a uniqueness theorem for the helicoid.
%J Manuscripta mathematica
%D 1995
%P 417-434
%V 87
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM2_1995__87_4_156097/
%F MM2_1995__87_4_156097
Friedrich Tomi; Jaime Ripoll. Maximum Principles for Minimal surfaces in R3 Having noncompact boundary and a uniqueness theorem for the helicoid.. Manuscripta mathematica, Tome 87 (1995) no. 4, pp. 417-434. http://geodesic.mathdoc.fr/item/MM2_1995__87_4_156097/