Maximum Principles for Minimal surfaces in R3 Having noncompact boundary and a uniqueness theorem for the helicoid.
Manuscripta mathematica, Tome 87 (1995) no. 4, pp. 417-434
Voir la notice de l'article provenant de la source European Digital Mathematics Library
@article{MM2_1995__87_4_156097,
author = {Friedrich Tomi and Jaime Ripoll},
title = {Maximum {Principles} for {Minimal} surfaces in {R3} {Having} noncompact boundary and a uniqueness theorem for the helicoid.},
journal = {Manuscripta mathematica},
pages = {417--434},
publisher = {mathdoc},
volume = {87},
number = {4},
year = {1995},
zbl = {0838.53014},
url = {http://geodesic.mathdoc.fr/item/MM2_1995__87_4_156097/}
}
TY - JOUR AU - Friedrich Tomi AU - Jaime Ripoll TI - Maximum Principles for Minimal surfaces in R3 Having noncompact boundary and a uniqueness theorem for the helicoid. JO - Manuscripta mathematica PY - 1995 SP - 417 EP - 434 VL - 87 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM2_1995__87_4_156097/ ID - MM2_1995__87_4_156097 ER -
%0 Journal Article %A Friedrich Tomi %A Jaime Ripoll %T Maximum Principles for Minimal surfaces in R3 Having noncompact boundary and a uniqueness theorem for the helicoid. %J Manuscripta mathematica %D 1995 %P 417-434 %V 87 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM2_1995__87_4_156097/ %F MM2_1995__87_4_156097
Friedrich Tomi; Jaime Ripoll. Maximum Principles for Minimal surfaces in R3 Having noncompact boundary and a uniqueness theorem for the helicoid.. Manuscripta mathematica, Tome 87 (1995) no. 4, pp. 417-434. http://geodesic.mathdoc.fr/item/MM2_1995__87_4_156097/