When is a Ring of Torus Invariants a Polynomial Ring?
Manuscripta mathematica, Tome 82 (1994) no. 1, pp. 161-170.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : algebraic torus, ring of invariants, weight lattice
@article{MM2_1994__82_1_155925,
     author = {David L. Wehlau},
     title = {When is a {Ring} of {Torus} {Invariants} a {Polynomial} {Ring?}},
     journal = {Manuscripta mathematica},
     pages = {161--170},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {1994},
     zbl = {0809.14008},
     url = {http://geodesic.mathdoc.fr/item/MM2_1994__82_1_155925/}
}
TY  - JOUR
AU  - David L. Wehlau
TI  - When is a Ring of Torus Invariants a Polynomial Ring?
JO  - Manuscripta mathematica
PY  - 1994
SP  - 161
EP  - 170
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM2_1994__82_1_155925/
ID  - MM2_1994__82_1_155925
ER  - 
%0 Journal Article
%A David L. Wehlau
%T When is a Ring of Torus Invariants a Polynomial Ring?
%J Manuscripta mathematica
%D 1994
%P 161-170
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM2_1994__82_1_155925/
%F MM2_1994__82_1_155925
David L. Wehlau. When is a Ring of Torus Invariants a Polynomial Ring?. Manuscripta mathematica, Tome 82 (1994) no. 1, pp. 161-170. http://geodesic.mathdoc.fr/item/MM2_1994__82_1_155925/