A homological criterion for reducibility of analytic spaces, with application to characterizing the theta divisor of a product of two general principally polarized abelian varieties.
Manuscripta mathematica, Tome 81 (1993) no. 3-4, pp. 263-282.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : codimension one singularity, homological invariants, principally polarized abelian variety, theta divisors
@article{MM2_1993__81_3-4_155900,
     author = {Roy Smith and Roberta Varley},
     title = {A homological criterion for reducibility of analytic spaces, with application to characterizing the theta divisor of a product of two general principally polarized abelian varieties.},
     journal = {Manuscripta mathematica},
     pages = {263--282},
     publisher = {mathdoc},
     volume = {81},
     number = {3-4},
     year = {1993},
     zbl = {0826.32028},
     url = {http://geodesic.mathdoc.fr/item/MM2_1993__81_3-4_155900/}
}
TY  - JOUR
AU  - Roy Smith
AU  - Roberta Varley
TI  - A homological criterion for reducibility of analytic spaces, with application to characterizing the theta divisor of a product of two general principally polarized abelian varieties.
JO  - Manuscripta mathematica
PY  - 1993
SP  - 263
EP  - 282
VL  - 81
IS  - 3-4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM2_1993__81_3-4_155900/
ID  - MM2_1993__81_3-4_155900
ER  - 
%0 Journal Article
%A Roy Smith
%A Roberta Varley
%T A homological criterion for reducibility of analytic spaces, with application to characterizing the theta divisor of a product of two general principally polarized abelian varieties.
%J Manuscripta mathematica
%D 1993
%P 263-282
%V 81
%N 3-4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM2_1993__81_3-4_155900/
%F MM2_1993__81_3-4_155900
Roy Smith; Roberta Varley. A homological criterion for reducibility of analytic spaces, with application to characterizing the theta divisor of a product of two general principally polarized abelian varieties.. Manuscripta mathematica, Tome 81 (1993) no. 3-4, pp. 263-282. http://geodesic.mathdoc.fr/item/MM2_1993__81_3-4_155900/