A variational principle for the nonstationary linear Navier-Stokes equations.
Manuscripta mathematica, Tome 78 (1993) no. 4, pp. 335-346.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : time-averaged data, time-nonlocal condition, solvability, uniqueness, Galerkin approximation
@article{MM2_1993__78_4_155812,
     author = {Vladimir Shelukhin},
     title = {A variational principle for the nonstationary linear {Navier-Stokes} equations.},
     journal = {Manuscripta mathematica},
     pages = {335--346},
     publisher = {mathdoc},
     volume = {78},
     number = {4},
     year = {1993},
     zbl = {0795.35083},
     url = {http://geodesic.mathdoc.fr/item/MM2_1993__78_4_155812/}
}
TY  - JOUR
AU  - Vladimir Shelukhin
TI  - A variational principle for the nonstationary linear Navier-Stokes equations.
JO  - Manuscripta mathematica
PY  - 1993
SP  - 335
EP  - 346
VL  - 78
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM2_1993__78_4_155812/
ID  - MM2_1993__78_4_155812
ER  - 
%0 Journal Article
%A Vladimir Shelukhin
%T A variational principle for the nonstationary linear Navier-Stokes equations.
%J Manuscripta mathematica
%D 1993
%P 335-346
%V 78
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM2_1993__78_4_155812/
%F MM2_1993__78_4_155812
Vladimir Shelukhin. A variational principle for the nonstationary linear Navier-Stokes equations.. Manuscripta mathematica, Tome 78 (1993) no. 4, pp. 335-346. http://geodesic.mathdoc.fr/item/MM2_1993__78_4_155812/