A variational principle for the nonstationary linear Navier-Stokes equations.
Manuscripta mathematica, Tome 78 (1993) no. 4, pp. 335-346
Cet article a éte moissonné depuis la source European Digital Mathematics Library
Mots-clés :
time-averaged data, time-nonlocal condition, solvability, uniqueness, Galerkin approximation
@article{MM2_1993__78_4_155812,
author = {Vladimir Shelukhin},
title = {A variational principle for the nonstationary linear {Navier-Stokes} equations.},
journal = {Manuscripta mathematica},
pages = {335--346},
year = {1993},
volume = {78},
number = {4},
zbl = {0795.35083},
url = {http://geodesic.mathdoc.fr/item/MM2_1993__78_4_155812/}
}
Vladimir Shelukhin. A variational principle for the nonstationary linear Navier-Stokes equations.. Manuscripta mathematica, Tome 78 (1993) no. 4, pp. 335-346. http://geodesic.mathdoc.fr/item/MM2_1993__78_4_155812/