A mean value theorem on differences of two k-th powers of numbers in residue classes.
Manuscripta mathematica, Tome 72 (1991) no. 1, pp. 213-222.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : differences of k-th powers, generalized circle problem, lattice points in planar domains, lattice rest, discrete Hardy-Littlewood method
@article{MM2_1991__72_1_155639,
     author = {Gerald Kuba},
     title = {A mean value theorem on differences of two k-th powers of numbers in residue classes.},
     journal = {Manuscripta mathematica},
     pages = {213--222},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {1991},
     zbl = {0735.11047},
     url = {http://geodesic.mathdoc.fr/item/MM2_1991__72_1_155639/}
}
TY  - JOUR
AU  - Gerald Kuba
TI  - A mean value theorem on differences of two k-th powers of numbers in residue classes.
JO  - Manuscripta mathematica
PY  - 1991
SP  - 213
EP  - 222
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM2_1991__72_1_155639/
ID  - MM2_1991__72_1_155639
ER  - 
%0 Journal Article
%A Gerald Kuba
%T A mean value theorem on differences of two k-th powers of numbers in residue classes.
%J Manuscripta mathematica
%D 1991
%P 213-222
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM2_1991__72_1_155639/
%F MM2_1991__72_1_155639
Gerald Kuba. A mean value theorem on differences of two k-th powers of numbers in residue classes.. Manuscripta mathematica, Tome 72 (1991) no. 1, pp. 213-222. http://geodesic.mathdoc.fr/item/MM2_1991__72_1_155639/