Invariant subrings of ... [X, Y, Z] which are complete intersections.
Manuscripta mathematica, Tome 39 (1982), pp. 339-358.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : invariant polynomial rings, complete intersections, finite subgroups of GL(3, C)
@article{MM2_1982__39_154892,
     author = {Kei-ichi Watanabe and Denis Rotillon},
     title = {Invariant subrings of ... {[X,} {Y,} {Z]} which are complete intersections.},
     journal = {Manuscripta mathematica},
     pages = {339--358},
     publisher = {mathdoc},
     volume = {39},
     year = {1982},
     zbl = {0515.20030},
     url = {http://geodesic.mathdoc.fr/item/MM2_1982__39_154892/}
}
TY  - JOUR
AU  - Kei-ichi Watanabe
AU  - Denis Rotillon
TI  - Invariant subrings of ... [X, Y, Z] which are complete intersections.
JO  - Manuscripta mathematica
PY  - 1982
SP  - 339
EP  - 358
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM2_1982__39_154892/
ID  - MM2_1982__39_154892
ER  - 
%0 Journal Article
%A Kei-ichi Watanabe
%A Denis Rotillon
%T Invariant subrings of ... [X, Y, Z] which are complete intersections.
%J Manuscripta mathematica
%D 1982
%P 339-358
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM2_1982__39_154892/
%F MM2_1982__39_154892
Kei-ichi Watanabe; Denis Rotillon. Invariant subrings of ... [X, Y, Z] which are complete intersections.. Manuscripta mathematica, Tome 39 (1982), pp. 339-358. http://geodesic.mathdoc.fr/item/MM2_1982__39_154892/