Invariant subrings of ... [X, Y, Z] which are complete intersections.
Manuscripta mathematica, Tome 39 (1982), pp. 339-358
Cet article a éte moissonné depuis la source European Digital Mathematics Library
@article{MM2_1982__39_154892,
author = {Kei-ichi Watanabe and Denis Rotillon},
title = {Invariant subrings of ... {[X,} {Y,} {Z]} which are complete intersections.},
journal = {Manuscripta mathematica},
pages = {339--358},
year = {1982},
volume = {39},
zbl = {0515.20030},
url = {http://geodesic.mathdoc.fr/item/MM2_1982__39_154892/}
}
Kei-ichi Watanabe; Denis Rotillon. Invariant subrings of ... [X, Y, Z] which are complete intersections.. Manuscripta mathematica, Tome 39 (1982), pp. 339-358. http://geodesic.mathdoc.fr/item/MM2_1982__39_154892/