Every topological category is convenient for Gelfand Duality.
Manuscripta mathematica, Tome 25 (1978), pp. 169-204.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : Topological Category, Monoidally Closed Category, Cotensors, (E, M)- Factorization, Topological Functors, Galois-Correspondence, Generalized Closure Operators, Gelfand-Naimark Duality, Topological Categories, Monadic Functors
@article{MM2_1978__25_154564,
     author = {Hans-E. Porst and Manfred B. Wischnewski},
     title = {Every topological category is convenient for {Gelfand} {Duality.}},
     journal = {Manuscripta mathematica},
     pages = {169--204},
     publisher = {mathdoc},
     volume = {25},
     year = {1978},
     zbl = {0401.46041},
     url = {http://geodesic.mathdoc.fr/item/MM2_1978__25_154564/}
}
TY  - JOUR
AU  - Hans-E. Porst
AU  - Manfred B. Wischnewski
TI  - Every topological category is convenient for Gelfand Duality.
JO  - Manuscripta mathematica
PY  - 1978
SP  - 169
EP  - 204
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM2_1978__25_154564/
ID  - MM2_1978__25_154564
ER  - 
%0 Journal Article
%A Hans-E. Porst
%A Manfred B. Wischnewski
%T Every topological category is convenient for Gelfand Duality.
%J Manuscripta mathematica
%D 1978
%P 169-204
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM2_1978__25_154564/
%F MM2_1978__25_154564
Hans-E. Porst; Manfred B. Wischnewski. Every topological category is convenient for Gelfand Duality.. Manuscripta mathematica, Tome 25 (1978), pp. 169-204. http://geodesic.mathdoc.fr/item/MM2_1978__25_154564/