Uncountable Powers of ... can be almost Lindelöf.
Manuscripta mathematica, Tome 22 (1977), pp. 77-86.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : almost Lindelöf, martin's axiom, radon measure space, countable powers of the reals
@article{MM2_1977__22_154482,
     author = {D.H. Fremlin},
     title = {Uncountable {Powers} of ... can be almost {Lindel\"of.}},
     journal = {Manuscripta mathematica},
     pages = {77--86},
     publisher = {mathdoc},
     volume = {22},
     year = {1977},
     zbl = {0396.54015},
     url = {http://geodesic.mathdoc.fr/item/MM2_1977__22_154482/}
}
TY  - JOUR
AU  - D.H. Fremlin
TI  - Uncountable Powers of ... can be almost Lindelöf.
JO  - Manuscripta mathematica
PY  - 1977
SP  - 77
EP  - 86
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM2_1977__22_154482/
ID  - MM2_1977__22_154482
ER  - 
%0 Journal Article
%A D.H. Fremlin
%T Uncountable Powers of ... can be almost Lindelöf.
%J Manuscripta mathematica
%D 1977
%P 77-86
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM2_1977__22_154482/
%F MM2_1977__22_154482
D.H. Fremlin. Uncountable Powers of ... can be almost Lindelöf.. Manuscripta mathematica, Tome 22 (1977), pp. 77-86. http://geodesic.mathdoc.fr/item/MM2_1977__22_154482/