У консервативного оператора норма равна спектральному радиусу
Matematičeskie issledovaniâ, Tome 5 (1970) no. 3, pp. 186-189
Voir la notice de l'article provenant de la source European Digital Mathematics Library
@article{MI_1970__5_3_189044,
author = {{\CYRV}.{\CYREREV}. {\CYRK}{\cyra}{\cyrc}{\cyrn}{\cyre}{\cyrl}{\cyrsftsn}{\cyrs}{\cyro}{\cyrn}},
title = {{\CYRU} {\cyrk}{\cyro}{\cyrn}{\cyrs}{\cyre}{\cyrr}{\cyrv}{\cyra}{\cyrt}{\cyri}{\cyrv}{\cyrn}{\cyro}{\cyrg}{\cyro} {\cyro}{\cyrp}{\cyre}{\cyrr}{\cyra}{\cyrt}{\cyro}{\cyrr}{\cyra} {\cyrn}{\cyro}{\cyrr}{\cyrm}{\cyra} {\cyrr}{\cyra}{\cyrv}{\cyrn}{\cyra} {\cyrs}{\cyrp}{\cyre}{\cyrk}{\cyrt}{\cyrr}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyro}{\cyrm}{\cyru} {\cyrr}{\cyra}{\cyrd}{\cyri}{\cyru}{\cyrs}{\cyru}},
journal = {Matemati\v{c}eskie issledovani\^a},
pages = {186--189},
publisher = {mathdoc},
volume = {5},
number = {3},
year = {1970},
zbl = {0226.47002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MI_1970__5_3_189044/}
}
В.Э. Кацнельсон. У консервативного оператора норма равна спектральному радиусу. Matematičeskie issledovaniâ, Tome 5 (1970) no. 3, pp. 186-189. http://geodesic.mathdoc.fr/item/MI_1970__5_3_189044/