Дискретные уравнения Винера-Хопфа в $p$-нормированных алгебрах $ℓ_p$$(0
Matematičeskie issledovaniâ, Tome 3 (1968) no. 3, pp. 150-158
Voir la notice de l'article provenant de la source European Digital Mathematics Library
@article{MI_1968__3_3_188933,
author = {M.K. {\CYRZ}{\cyra}{\cyrm}{\cyrb}{\cyri}{\cyrc}{\cyrk}{\cyri}{\cyrishrt}},
title = {{\CYRD}{\cyri}{\cyrs}{\cyrk}{\cyrr}{\cyre}{\cyrt}{\cyrn}{\cyrery}{\cyre} {\cyru}{\cyrr}{\cyra}{\cyrv}{\cyrn}{\cyre}{\cyrn}{\cyri}{\cyrya} {{\CYRV}{\cyri}{\cyrn}{\cyre}{\cyrr}{\cyra}-{\CYRH}{\cyro}{\cyrp}{\cyrf}{\cyra}} {\cyrv} $p$-{\cyrn}{\cyro}{\cyrr}{\cyrm}{\cyri}{\cyrr}{\cyro}{\cyrv}{\cyra}{\cyrn}{\cyrn}{\cyrery}{\cyrh} {\cyra}{\cyrl}{\cyrg}{\cyre}{\cyrb}{\cyrr}{\cyra}{\cyrh} $\ensuremath{\ell}_p$$(0<p<1)$},
journal = {Matemati\v{c}eskie issledovani\^a},
pages = {150--158},
publisher = {mathdoc},
volume = {3},
number = {3},
year = {1968},
zbl = {0238.45007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MI_1968__3_3_188933/}
}
M.K. Замбицкий. Дискретные уравнения Винера-Хопфа в $p$-нормированных алгебрах $ℓ_p$$(0<p<1)$. Matematičeskie issledovaniâ, Tome 3 (1968) no. 3, pp. 150-158. http://geodesic.mathdoc.fr/item/MI_1968__3_3_188933/