Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2024_16_3_a3, author = {Anna N. Rettieva}, title = {Cooperative multicriteria dynamic games: application to transportation problems}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {58--76}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2024_16_3_a3/} }
TY - JOUR AU - Anna N. Rettieva TI - Cooperative multicriteria dynamic games: application to transportation problems JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2024 SP - 58 EP - 76 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2024_16_3_a3/ LA - ru ID - MGTA_2024_16_3_a3 ER -
Anna N. Rettieva. Cooperative multicriteria dynamic games: application to transportation problems. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 3, pp. 58-76. http://geodesic.mathdoc.fr/item/MGTA_2024_16_3_a3/
[1] Mazalov V.V., Rettieva A.N., “Reguliruemoe ravnovesie v diskretnoi zadache razdeleniya bioresursov”, Doklady RAN, 423:3 (2008), 320–322
[2] Mazalov V.V., Rettieva A.N., “Reguliruemoe ravnovesie v zadache razdeleniya bioresursov”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2010, no. 4, 91–99 | MR | Zbl
[3] Osnovnye pokazateli sotsialno-ekonomicheskogo polozheniya munitsipalnykh obrazovanii, Ofitsialnyi sait Kareliyastat 10.rosstat.gov.ru/main_indicators
[4] Transport, Ofitsialnyi sait Administratsii Petrozavodskogo gorodskogo okruga www.petrozavodsk-mo.ru/petrozavodsk_new/activity/transport.htm
[5] Petrosyan L.A., “Ustoichivost reshenii differentsialnykh igr so mnogimi uchastnikami”, Vestnik Leningradskogo universiteta. Seriya 1: Matematika, mekhanika, astronomiya, 1977, no. 19, 46–52 | Zbl
[6] Petrosyan L.A., Danilov N.N., “Ustoichivost reshenii neantagonisticheskikh differentsialnykh igr s transferabelnymi vyigryshami”, Vestnik Leningradskogo universiteta. Seriya 1: Matematika, mekhanika, astronomiya, 1979, no. 1, 52–59 | Zbl
[7] Ehtamo H., Hämäläinen R.P., “A cooperative incentive equilibrium for a resource management problem”, J. Econ. Dyn. Control, 17 (1993), 659–678 | DOI | MR | Zbl
[8] Kuzyutin D., Nikitina M., “Time consistent cooperative solutions for multistage games with vector payoffs”, Oper. Res. Lett., 45:3 (2017), 269–274 | DOI | MR | Zbl
[9] Kuzyutin D., Gromova E., Pankratova Y., “Sustainable cooperation in multicriteria multistage games”, Oper. Res. Lett., 46:6 (2018), 557–562 | DOI | MR | Zbl
[10] Mazalov V.V., Rettieva A.N., “Fish wars and cooperation maintenance”, Ecological Modelling, 221 (2010), 1545–1553 | DOI
[11] Osborn D.K., “Cartel problems”, Am. Econ. Rev., 66 (1979), 835–844
[12] Pusillo L., Tijs S., “E-equilibria for multicriteria games”, Annals of ISDG, 12 (2013), 217–228 | MR
[13] Rettieva A.N., “Multicriteria dynamic games”, International Game Theory Review, 1:19 (2017), 1750002 | DOI | MR | Zbl
[14] Rettieva A.N., “Dynamic multicriteria games with finite horizon”, Mathematics, 6:9 (2018), 156 | DOI | Zbl
[15] Rettieva A.N., “Dynamic multicriteria games with asymmetric players”, Journal of Global Optimization, 83 (2022), 521–537 | DOI | MR | Zbl
[16] Shapley L.S., “Equilibrium points in games with vector payoffs”, Naval Research Logistic Quarterly, 6 (1959), 57–61 | DOI | MR
[17] Voorneveld M., Grahn S., Dufwenberg M., “Ideal equilibria in noncooperative multicriteria games”, Mathematical Methods of Operations Research, 52 (2000), 65–77 | DOI | MR | Zbl