Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2024_16_2_a1, author = {Alexey A. Kovalchuk}, title = {Intransitive sets of random variables, boundaries with {Markov} moments}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {8--28}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a1/} }
TY - JOUR AU - Alexey A. Kovalchuk TI - Intransitive sets of random variables, boundaries with Markov moments JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2024 SP - 8 EP - 28 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a1/ LA - ru ID - MGTA_2024_16_2_a1 ER -
Alexey A. Kovalchuk. Intransitive sets of random variables, boundaries with Markov moments. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 2, pp. 8-28. http://geodesic.mathdoc.fr/item/MGTA_2024_16_2_a1/
[1] Bulinskii A.V., Shiryaev A.N., Teoriya sluchainykh protsessov, Fizmatlit, 2005
[2] Teoriya bolshogo vzryva, otryvok s opisaniem igry, https://www.youtube.com/watch?v=cuU5MHyinFs
[3] Tokarev S.S., «Netranzitivnyi lokhotron» na fondovom rynke. Ob odnoi perspektivnoi forme platnogo obucheniya ekonomike, , 2009 http://cdn.scipeople.ru/materials/14103/Nontransitive20lohotron.pdf
[4] Shiryaev A.N., Osnovy stokhasticheskoi finansovoi matematiki, Fazis, M., 1998
[5] Shiryaev A.N., “O martingalnykh metodakh v zadachakh o peresechenii granits brounovskim dvizheniem”, Sovr. probl. matem., 2007, no. 8, 3–78 | DOI
[6] Finam, Mosbirzha, aktsii Sberbank, , 2021 https://www.finam.ru/profile/moex-akcii/sberbank/export/
[7] Finam, Mosbirzha, aktsii Gazproma, , 2022 https://www.finam.ru/profile/moex-akcii/gazprom/export/
[8] Kass S., Rock paper scissors spock lizard, http://www.samkass.com/theories/RPSSL.html
[9] Usiskin Z., “Max–Min Probabilities in the Voting Paradox”, Ann. Math. Statist., 35:2, 857–862 | DOI | MR | Zbl