On solvability of a pursuit game with nonlinear dynamics in the Hilbert space
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 1, pp. 92-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a pursuit differential game in the Hilbert space. The game dynamics is described by two semilinear evolutionary equations with an optionally bounded operator in the Hilbert space; and each of these equations is controlled by its own player. The controls appear linearly in right hand sides of the equations and are restricted by conditions of the norm boundedness with given constants. We establish sufficient conditions for solvability of the determined pursuit game in both linear and nonlinear cases. Here we use the Minty-Browder's theorem and also a chain technology of successive continuation of the solution to a controlled system to intermediate states. As examples of reduction to the abstract operator equation under study we consider Oskolkov's system of equations and a semilinear wave equation.
Keywords: semilinear evolutionary equation in the Hilbert space, optionally bounded operator, conditions for solvability of a pursuit game.
@article{MGTA_2024_16_1_a5,
     author = {Andrey V. Chernov},
     title = {On solvability of a pursuit game with nonlinear dynamics in the {Hilbert} space},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {92--125},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2024_16_1_a5/}
}
TY  - JOUR
AU  - Andrey V. Chernov
TI  - On solvability of a pursuit game with nonlinear dynamics in the Hilbert space
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2024
SP  - 92
EP  - 125
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2024_16_1_a5/
LA  - ru
ID  - MGTA_2024_16_1_a5
ER  - 
%0 Journal Article
%A Andrey V. Chernov
%T On solvability of a pursuit game with nonlinear dynamics in the Hilbert space
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2024
%P 92-125
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2024_16_1_a5/
%G ru
%F MGTA_2024_16_1_a5
Andrey V. Chernov. On solvability of a pursuit game with nonlinear dynamics in the Hilbert space. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 16 (2024) no. 1, pp. 92-125. http://geodesic.mathdoc.fr/item/MGTA_2024_16_1_a5/

[1] Balakrishnan A.V., Prikladnoi funktsionalnyi analiz, Nauka, M., 1980 | MR

[2] Vlasenko A.A., Chikrii A.A., “Ob odnoi differentsialnoi igre v sisteme s raspredelennymi parametrami”, Tr. IMM UrO RAN, 20, no. 4, 2014, 71–80

[3] Vlasenko A.A., Rutkas A.G., Chikrii A.A., “O differentsialnoi igre v abstraktnoi parabolicheskoi sisteme”, Tr. IMM UrO RAN, 21, no. 2, 2015, 26–40

[4] Gaevskii Kh., Grëger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978

[5] Zvyagin V.G., Turbin M.V., “Issledovanie nachalno-kraevykh zadach dlya matematicheskikh modelei dvizheniya zhidkostei Kelvina–Foigta”, Sovremennaya matematika. Fundamentalnye napravleniya, 31, 2009, 3–144

[6] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka, M., 1984 | MR

[7] Kachurovskii R.I., “Nelineinye monotonnye operatory v banakhovykh prostranstvakh”, Uspekhi matem. nauk, 23:2(140) (1968), 121–168 | MR | Zbl

[8] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[9] Osipov Yu.S., “K teorii differentsialnykh igr v sistemakh s raspredelennymi parametrami”, DAN SSSR, 223:6 (1975), 1314–1317 | MR | Zbl

[10] Satimov N.Yu., Tukhtasinov M., “Ob uklonenii ot vstrechi v odnom klasse raspredelennykh upravlyaemykh sistem”, Matem. zametki, 97:5 (2015), 749–760 | DOI | MR | Zbl

[11] S.G. Krein (red.), Funktsionalnyi analiz, Nauka, M., 1979 | MR

[12] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962, 830 pp. | MR

[13] Chernov A.V., “O tochnoi upravlyaemosti polulineinogo evolyutsionnogo uravneniya s neogranichennym operatorom”, Differentsialnye uravneniya, 59:2 (2023), 257–269 | DOI | Zbl

[14] Chernov A.V., “O differentsirovanii funktsionala v zadache parametricheskoi optimizatsii koeffitsienta uravneniya globalnoi elektricheskoi tsepi”, Zhurn. vychislit. matem. i matem. fiz., 56:9 (2016), 1586–1601 | DOI | Zbl

[15] Chernov A.V., “O totalnom sokhranenii globalnoi razreshimosti operatornogo differentsialnogo uravneniya: $L_2$-teoriya”, Funktsionalno-differentsialnye uravneniya: teoriya i prilozheniya, Materialy konferentsii, posvyaschennoi 95-letiyu so dnya rozhdeniya prof. N.V. Azbeleva (Perm, 17–19 maya 2017), Izd-vo Permskogo nats. issled. politekh. un-ta, Perm, 2018, 263–276

[16] Brezis H., Functional analysis, Sobolev spaces and partial differential equations, Springer, N.Y.–Dordrecht–Heidelberg–London, 2011 | MR | Zbl

[17] Ibragimov G., Alias I.A., Waziri U., Ja'afaru A.B., “Differential game of optimal pursuit for an infinite system of differential equations”, Bull. Malays. Math. Sci. Soc., 2:1(42) (2019), 391–403 | DOI | MR | Zbl

[18] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York etc., 1983 | MR | Zbl