Game Problem of Target Approach for Nonlinear Control System
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 2, pp. 122-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the game problem of approach of a nonlinear control system with a target set at a fixed terminal time. The key property of stability and stable bridges is investigated in the posed positional differential game. The scheme for approximate calculation of the maximum $u$-stable bridge is proposed in the target approach problem, and the correctness of the construction is justified.
Keywords: control system, differential inclusion, game problem of target approach, $u$-stable bridge, $u$-stable path, fixed terminal time, approximating system of sets.
@article{MGTA_2023_15_2_a7,
     author = {Vladimir N. Ushakov and Alexander M. Tarasyev},
     title = {Game {Problem} of {Target} {Approach} for {Nonlinear} {Control} {System}},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {122--139},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a7/}
}
TY  - JOUR
AU  - Vladimir N. Ushakov
AU  - Alexander M. Tarasyev
TI  - Game Problem of Target Approach for Nonlinear Control System
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2023
SP  - 122
EP  - 139
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a7/
LA  - ru
ID  - MGTA_2023_15_2_a7
ER  - 
%0 Journal Article
%A Vladimir N. Ushakov
%A Alexander M. Tarasyev
%T Game Problem of Target Approach for Nonlinear Control System
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2023
%P 122-139
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a7/
%G ru
%F MGTA_2023_15_2_a7
Vladimir N. Ushakov; Alexander M. Tarasyev. Game Problem of Target Approach for Nonlinear Control System. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 2, pp. 122-139. http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a7/

[1] Alekseichik M.I., “Dalneishaya formalizatsiya osnovnykh elementov antagonisticheskoi differentsialnoi igry”, Matematicheskii analiz i ego prilozheniya, 7 (1975), 191–199 | Zbl

[2] Baibazarov M., Subbotin A.I., “Ob odnom opredelenii tseny differentsialnoi igry”, Dif. uravneniya, 20:9 (1984), 1489–1495 | MR | Zbl

[3] Krasovskii N.N., “Igrovye zadachi dinamiki I”, Izv. AN SSSR. Tekhn. kibernetika, 1969, no. 5, 3–12 | Zbl

[4] Krasovskii N.N., “K zadache unifikatsii differentsialnykh igr”, Dokl. AN SSSR, 226:6 (1976), 1260–1263 | MR | Zbl

[5] Krasovskii N.N., “Unifikatsiya differentsialnykh igr”, Igrovye zadachi upravleniya, Tr. Instituta matematiki i mekhaniki, 24, 1977, 32–45

[6] Krasovskii N.N., Subbotin A.I., “O strukture differentsialnykh igr”, Dokl. AN SSSR, 190:3 (1970), 523–526 | Zbl

[7] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR

[8] Krasovskii N.N., Subbotin A.I., Ushakov V.N., “Minimaksnaya differentsialnaya igra”, Dokl. AN SSSR, 206:2 (1972), 277–280 | Zbl

[9] Kryazhimskii L.S., Osipov Yu.S., “Ob odnom algoritmicheskom kriterii razreshimosti igrovykh zadach dlya lineinykh upravlyaemykh sistem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 6, no. 1, 2000, 131–140

[10] Kurzhanskii A.B., “Alternirovannyi integral Pontryagina v teorii sinteza upravlenii”, Tr. MIAN, 224, 1999, 234–248 | Zbl

[11] Nikolskii M.S., “Ob alternirovannom integrale L.S. Pontryagina”, Mat. sb., 116:1 (1981), 136–144 | MR | Zbl

[12] Polovinkin E.S., “Stabilnost terminalnogo mnozhestva i optimalnost vremeni presledovaniya v differentsialnykh igrakh”, Dif. uravneniya, 20:3 (1984), 433–446 | MR | Zbl

[13] Pontryagin L.S., “O lineinykh differentsialnykh igrakh. II”, DAN, 175:4 (1967), 764–766 | MR | Zbl

[14] Pontryagin L.S., “Matematicheskaya teoriya optimalnykh protsessov i differentsialnye igry”, Tr. MIAN, 169, 1985, 119–158 | Zbl

[15] Subbotin A.I., Minimaksnye neravenstva i uravneniya Gamiltona-Yakobi, Nauka, M., 1991

[16] Subbotin A.I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka, Institut kompyuternykh issledovanii, M.–Izhevsk, 2003

[17] Subbotin A.I., Subbotina N.N., “Neobkhodimye i dostatochnye usloviya dlya kusochno-gladkoi tseny differentsialnoi igry”, Dokl. AN SSSR, 243:4 (1978), 862–865 | MR | Zbl

[18] Subbotin A.I., Subbotina N.N., “Kusochno-gladkie resheniya uravnenii s chastnymi proizvodnymi pervogo poryadka”, Dokl. RAN, 336:6 (1994), 705–707

[19] Subbotina N.N., “Universalnye optimalnye strategii v pozitsionnykh differentsialnykh igrakh”, Dif. uravneniya, 19:11 (1983), 1890–1896 | MR | Zbl

[20] Subbotina N.N., “Singulyarnye approksimatsii minimaksnykh i vyazkostnykh reshenii uravneniya Gamiltona-Yakobi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 6, no. 1, 2000, 190–208

[21] Subbotin A.I., Tarasev A.M., Ushakov V.N., “Obobschennye kharakteristiki uravnenii Gamiltona-Yakobi”, Izv. RAN. Tekhn. kibernetika, 1993, no. 1, 190–197

[22] Subbotina N.N., Shagalova L.G., “O reshenii zadachi Koshi dlya uravneniya Gamiltona-Yakobi s fazovymi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 2, 2011, 191–208

[23] Tarasev A.M., Uspenskii A.A., Ushakov V.N., “Approksimatsionnye skhemy i konechno-raznostnye operatory dlya postroeniya obobschennykh reshenii uravnenii Gamiltona-Yakobi”, Izv. RAN. Tekhn. kibernetika, 1994, no. 3, 173–185 | Zbl

[24] Tarasev A.M., Ushakov V.N., Khripunov A.P., “Ob odnom vychislitelnom algoritme resheniya igrovykh zadach upravleniya”, Priklad. matematika i mekhanika, 51:2 (1987), 216–222 | MR | Zbl

[25] Ushakov V.N., “Minimaksnoe pogloschenie v differentsialnykh igrakh”, Ekstremalnye strategii v pozitsionnykh differentsialnykh igrakh, sb. st., Sverdlovsk, 1974, 252–272 | Zbl

[26] Ushakov V.N., “K zadache postroeniya stabilnykh mostov v differentsialnoi igre sblizheniya-ukloneniya”, Izv. AN SSSR. Tekhn. kibernetika, 1980, no. 4, 29–36 | Zbl

[27] Ushakov V.N., Latushkin Ya.A., “Defekt stabilnosti mnozhestv v igrovykh zadachakh upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 255, no. 2, 2006, 198–215

[28] Gomoyunov M.I., Lukoyanov N.Yu., Plaksin A.R., “Path-Dependent Hamilton-Jacobi Equations: The Minimax Solutions Revised”, Applied Mathematics Optimization, 84 (2021), 1087–1117 | DOI | MR