Solutions of cooperative differential games with partner sets
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 2, pp. 105-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

Network differential games with partner sets are considered. The payoff of each player depends on his actions and the actions of the players from his partner set. The article proposes a cooperative version of the game and introduces a special type of characteristic function that takes into account players in partner sets and proves its superadditivity. As a solution, we propose a $C$-core which non-emptiness is proved, as well as a Shapley value and a $\tau$-value.
Keywords: Shapley value, differential network game, partner sets.
@article{MGTA_2023_15_2_a6,
     author = {Leon A. Petrosyan and Yaroslavna B. Pankratova},
     title = {Solutions of cooperative differential games with partner sets},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {105--121},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a6/}
}
TY  - JOUR
AU  - Leon A. Petrosyan
AU  - Yaroslavna B. Pankratova
TI  - Solutions of cooperative differential games with partner sets
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2023
SP  - 105
EP  - 121
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a6/
LA  - ru
ID  - MGTA_2023_15_2_a6
ER  - 
%0 Journal Article
%A Leon A. Petrosyan
%A Yaroslavna B. Pankratova
%T Solutions of cooperative differential games with partner sets
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2023
%P 105-121
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a6/
%G ru
%F MGTA_2023_15_2_a6
Leon A. Petrosyan; Yaroslavna B. Pankratova. Solutions of cooperative differential games with partner sets. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 2, pp. 105-121. http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a6/

[1] Tur A. V., Petrosyan L. A., “Kooperativnye printsipy optimalnosti v differentsialnykh igrakh na setyakh”, MTIP, 12:4 (2020), 93–111 ; Tur A. V., Petrosyan L. A., “Cooperative Optimality Principles in Differential Games on Networks”, Autom. Remote Control, 82:6 (2021), 1095–1106 | Zbl | DOI | MR | Zbl

[2] Bulgakova M., Petrosyan L., “About one multistage non-antagonistic network game”, Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya, 5:4 (2019), 603–615 | DOI | MR

[3] Gao H. and Pankratova Y., “Cooperation in dynamic network games”, Contributions to Game Theory and Management, 10 (2017), 42–67 | MR

[4] Gromova E., “The Shapley value as a sustainable cooperative solution in differential games of three players”, Recent Advances in Game Theory and Applications. Static Dynamic Game Theory: Foundations Applications, eds. L.A. Petrosyan and V.V. Mazalov (eds.), Birkhäuser, Cham, 2016, 67–89 | DOI | MR | Zbl

[5] Isaacs R., Differential games, Wiley, NY, 1965, 384 pp. | Zbl

[6] Meza M.A.G. and Lopez-Barrientos J. D., “A differential game of a duopoly with network externalities”, Recent Advances in Game Theory and Applications. Static Dynamic Game Theory: Foundations Applications, eds. L.A. Petrosyan and V.V. Mazalov, Birkhäuser, Cham, 2016, 49–66 | DOI | MR | Zbl

[7] Krasovsky N.N, Subbotin A.I., Positional differential games, Nauka, M., 1974, 456 pp. (in Russian) | MR

[8] Pai H.M., “A differential game formulation of a controlled network”, Queueing Systems: Theory and Applications Archive, 64:4 (2010), 325–358 | DOI | MR | Zbl

[9] Petrosyan L.A., “Cooperative differential games on networks”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 5, 2010, 143–150 (in Russian)

[10] Petrosyan L., Zaccour G., “Time-consistent Shapley value allocation of pollution cost reduction”, J. Economic Dynamics and Control, 27 (2003), 381–398 | DOI | MR | Zbl

[11] Petrosyan L. A. and Yeung D. W. K., “Shapley value for differential network games: Theory and application”, J. Dynamics and Games, 8:2 (2020), 151–166 | DOI | MR

[12] Petrosyan L., Yeung D.W.K., Pankratova Y., “Cooperative Differen-tial Games with Partner Sets on Networks”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 27, no. 3, 2021, 286–295 | DOI | MR

[13] Petrosyan L., Pankratova Y., “Two Level Cooperation in Dynamic Network Games with Partner Sets”, International Conference on Mathematical Optimization Theory and Operations Research, Springer, Cham, 2022 | DOI | MR

[14] Shapley L.S., “A value for N-person games”, Contributions to the Theory of Games, eds. H. Kuhn and A. Tucker, Princeton Univ. Press, Princeton, 1953, 307–317 | MR

[15] Tijs S.H., “An axiomatization of the $\tau $-value”, Math. Social Sciences, 13 (1987), 177–181 | DOI | MR | Zbl

[16] Wie B.W., “A differential game model of Nash equilibrium on a congested traffic network”, Networks, 23 (1993), 557–565 | DOI | MR | Zbl

[17] Yeung D.W.K. and Petrosyan L.A., “Subgame consistent cooperative solution in stochastic differential games”, J. Optim. Theory Appl., 120:3 (2004), 651–666 | DOI | MR | Zbl

[18] Yeung D.W.K. and Petrosyan L.A., Subgame Consistent Cooperation: A Comprehensive Treatise, Springer Singapore, Singapore, 2016 | MR | Zbl

[19] Zhan G.H., Jiang L.V., Huang S., Wang J., and Zhang Y., “Attack-defense differential game model for network defense strategy selection”, IEEE Access, 7 (2018), 2169–3536 | DOI