Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MGTA_2023_15_2_a5, author = {Valerii S. Patsko and Georgii I. Trubnikov and Andrey A. Fedotov}, title = {Reachable set of the {Dubins} car with an integral constraint on control}, journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a}, pages = {89--104}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a5/} }
TY - JOUR AU - Valerii S. Patsko AU - Georgii I. Trubnikov AU - Andrey A. Fedotov TI - Reachable set of the Dubins car with an integral constraint on control JO - Matematičeskaâ teoriâ igr i eë priloženiâ PY - 2023 SP - 89 EP - 104 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a5/ LA - ru ID - MGTA_2023_15_2_a5 ER -
%0 Journal Article %A Valerii S. Patsko %A Georgii I. Trubnikov %A Andrey A. Fedotov %T Reachable set of the Dubins car with an integral constraint on control %J Matematičeskaâ teoriâ igr i eë priloženiâ %D 2023 %P 89-104 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a5/ %G ru %F MGTA_2023_15_2_a5
Valerii S. Patsko; Georgii I. Trubnikov; Andrey A. Fedotov. Reachable set of the Dubins car with an integral constraint on control. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 2, pp. 89-104. http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a5/
[1] Ardentov A.A., Sachkov Yu.L., “Reshenie zadachi Eilera ob elastikakh”, AiT, 2009, no. 4, 78–88 | Zbl
[2] Gusev M.I., Zykov I.V., “Ob ekstremalnykh svoistvakh granichnykh tochek mnozhestv dostizhimosti upravlyaemykh sistem pri integralnykh ogranicheniyakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 23, no. 1, 2017, 103–115
[3] Zelikin M.I., “Teoriya i prilozheniya zadachi ob eilerovykh elastikakh”, UMN, 67:2 (2012), 93–108 | DOI | MR | Zbl
[4] Patsko V.S., Pyatko S.G., Fedotov A.A., “Trekhmernoe mnozhestvo dostizhimosti nelineinoi upravlyaemoi sistemy”, Izvestiya RAN. TiSU, 2003, no. 3, 8–16 | Zbl
[5] Sikorskii Yu.S., Elementy teorii ellipticheskikh funktsii: S prilozheniyami k mekhanike, KomKniga, M., 2006
[6] Eiler L., Metod nakhozhdeniya krivykh linii, obladayuschikh svoistvami maksimuma, libo minimuma ili reshenie izoperimetricheskoi zadachi, vzyatoi v samom shirokom smysle, Gostekhizdat, M.–L., 1934
[7] Patsko V.S., Fedotov A.A., “Three-dimensional reachable set for the Dubins car: Foundation of analytical description”, Commun. Optim. Theory, 2022 (2022), 1–42 | MR