Reachable set of the Dubins car with an integral constraint on control
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 2, pp. 89-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

A three-dimensional reachable set for a nonlinear controlled object “Dubins car” is investigated. The control is the angular velocity of rotation of the linear velocity vector. The control action is constrained by an integral quadratic constraint. Based on the Pontryagin maximum principle, a description of the motions generating the boundary of the reachable set is given. The motions leading to the boundary are globally optimal Euler elastics. Simulation results are presented.
Mots-clés : Dubins car
Keywords: integral constraint on control, three-dimensional reachable set, Pontryagin maximum principle, Euler elastics, numerical constructions.
@article{MGTA_2023_15_2_a5,
     author = {Valerii S. Patsko and Georgii I. Trubnikov and Andrey A. Fedotov},
     title = {Reachable set of the {Dubins} car with an integral constraint on control},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {89--104},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a5/}
}
TY  - JOUR
AU  - Valerii S. Patsko
AU  - Georgii I. Trubnikov
AU  - Andrey A. Fedotov
TI  - Reachable set of the Dubins car with an integral constraint on control
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2023
SP  - 89
EP  - 104
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a5/
LA  - ru
ID  - MGTA_2023_15_2_a5
ER  - 
%0 Journal Article
%A Valerii S. Patsko
%A Georgii I. Trubnikov
%A Andrey A. Fedotov
%T Reachable set of the Dubins car with an integral constraint on control
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2023
%P 89-104
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a5/
%G ru
%F MGTA_2023_15_2_a5
Valerii S. Patsko; Georgii I. Trubnikov; Andrey A. Fedotov. Reachable set of the Dubins car with an integral constraint on control. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 2, pp. 89-104. http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a5/

[1] Ardentov A.A., Sachkov Yu.L., “Reshenie zadachi Eilera ob elastikakh”, AiT, 2009, no. 4, 78–88 | Zbl

[2] Gusev M.I., Zykov I.V., “Ob ekstremalnykh svoistvakh granichnykh tochek mnozhestv dostizhimosti upravlyaemykh sistem pri integralnykh ogranicheniyakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 23, no. 1, 2017, 103–115

[3] Zelikin M.I., “Teoriya i prilozheniya zadachi ob eilerovykh elastikakh”, UMN, 67:2 (2012), 93–108 | DOI | MR | Zbl

[4] Patsko V.S., Pyatko S.G., Fedotov A.A., “Trekhmernoe mnozhestvo dostizhimosti nelineinoi upravlyaemoi sistemy”, Izvestiya RAN. TiSU, 2003, no. 3, 8–16 | Zbl

[5] Sikorskii Yu.S., Elementy teorii ellipticheskikh funktsii: S prilozheniyami k mekhanike, KomKniga, M., 2006

[6] Eiler L., Metod nakhozhdeniya krivykh linii, obladayuschikh svoistvami maksimuma, libo minimuma ili reshenie izoperimetricheskoi zadachi, vzyatoi v samom shirokom smysle, Gostekhizdat, M.–L., 1934

[7] Patsko V.S., Fedotov A.A., “Three-dimensional reachable set for the Dubins car: Foundation of analytical description”, Commun. Optim. Theory, 2022 (2022), 1–42 | MR