On linear-quadratic differential games for fractional-order systems
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 2, pp. 18-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a finite-horizon two-person zero-sum differential game in which the system dynamics is described by a linear differential equation with a Caputo fractional derivative and the goals of control of the players are, respectively, to minimize and maximize a quadratic terminal-integral cost function. We present conditions for the existence of a game value and obtain formulas for players' optimal feedback control strategies with memory of motion history. The basis of the results is the construction of a solution of the appropriate Hamilton – Jacobi equation with so-called fractional coinvariant derivatives under a natural right-end boundary condition.
Keywords: linear-quadratic differential game, fractional-order system, game value, optimal strategies, Hamilton – Jacobi equation.
@article{MGTA_2023_15_2_a1,
     author = {Mikhail I. Gomoyunov and Nikolai Yu. Lukoyanov},
     title = {On linear-quadratic differential games for fractional-order systems},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {18--32},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a1/}
}
TY  - JOUR
AU  - Mikhail I. Gomoyunov
AU  - Nikolai Yu. Lukoyanov
TI  - On linear-quadratic differential games for fractional-order systems
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2023
SP  - 18
EP  - 32
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a1/
LA  - ru
ID  - MGTA_2023_15_2_a1
ER  - 
%0 Journal Article
%A Mikhail I. Gomoyunov
%A Nikolai Yu. Lukoyanov
%T On linear-quadratic differential games for fractional-order systems
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2023
%P 18-32
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a1/
%G ru
%F MGTA_2023_15_2_a1
Mikhail I. Gomoyunov; Nikolai Yu. Lukoyanov. On linear-quadratic differential games for fractional-order systems. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 2, pp. 18-32. http://geodesic.mathdoc.fr/item/MGTA_2023_15_2_a1/

[1] Gomoyunov M.I., “Ekstremalnyi sdvig na soputstvuyuschie tochki v pozitsionnoi differentsialnoi igre dlya sistemy drobnogo poryadka”, Trudy In-ta matematiki i mekhaniki UrO RAN, 25, no. 1, 2019, 11–34

[2] Zhukovskii V.I., Chikrii A.A., Lineino-kvadratichnye differentsialnye igry, Naukova dumka, Kiev, 1994

[3] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, 5-e izd., Nauka, M., 1981 | MR

[4] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985 | MR

[5] Krasovskii N.N., Tretyakov V.E., Zadachi upravleniya s garantirovannym rezultatom, Sred.-Ural. kn. izd-vo, Sverdlovsk, 1986

[6] Lukoyanov N.Yu., Funktsionalnye uravneniya Gamiltona–Yakobi i zadachi upravleniya s nasledstvennoi informatsiei, Izd-vo Ural. federal. un-ta, Ekaterinburg, 2011

[7] Machtakova A.I., Petrov N.N., “K lineinoi zadache gruppovogo presledovaniya s drobnymi proizvodnymi”, Trudy In-ta matematiki i mekhaniki UrO RAN, 28, no. 3, 2022, 129–141 | MR | Zbl

[8] Samko S.G., Kilbas A.A., Marichev O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[9] Turetskii V.Ya., “Ob uslovii razreshimosti lineino-kvadratichnoi igry”, Avtomat. i telemekh., 1989, no. 8, 55–64 | MR | Zbl

[10] Chikrii A.A., Matichin I.I., “Igrovye zadachi dlya lineinykh sistem drobnogo poryadka”, Trudy In-ta matematiki i mekhaniki UrO RAN, 15, no. 3, 2009, 262–278

[11] Başar T., Bernhard P., $H^\infty$-optimal control and related minimax design problems: a dynamic game approach, 2nd ed., Birkhäuser, Boston, MA, 1995 | MR

[12] Başar T., Olsder G.J., Dynamic noncooperative game theory, 2nd ed., SIAM, Philadelphia, PA, 1999 | MR | Zbl

[13] Bernhard P. Linear-quadratic, two-person, zero-sum differential games: necessary and sufficient conditions, J. Optim. Theory Appl., 27:1 (1979), 51–69 | DOI | MR | Zbl

[14] Diethelm K., The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type, Springer, Berlin, 2010 | MR | Zbl

[15] Engwerda J., LQ dynamic optimization and differential games, John Wiley Sons, Chichester, 2005

[16] Gomoyunov M.I., “Dynamic programming principle and Hamilton–Jacobi–Bellman equations for fractional-order systems”, SIAM J. Control Optim., 58:6 (2020), 3185–3211 | DOI | MR | Zbl

[17] Gomoyunov M.I., “Optimal control problems with a fixed terminal time in linear fractional-order systems”, Arch. Control Sci., 30:4 (2020), 721–744 | MR | Zbl

[18] Gomoyunov M.I., “Differential games for fractional-order systems: Hamilton–Jacobi–Bellman–Isaacs equation and optimal feedback strategies”, Mathematics, 9:14 (2021), 1667 | DOI | MR

[19] Gomoyunov M.I., “Value functional and optimal feedback control in linear-quadratic optimal control problem for fractional-order system”, Math. Control Relat. Fields, 2023 | MR

[20] Ho Y.C., Bryson A.E., Baron S., “Differential games and optimal pursuit-evasion strategies”, IEEE Trans. Autom. Control, 10:4 (1965), 385–389 | DOI | MR

[21] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006 | MR | Zbl

[22] Kim A.V., Functional differential equations. Application of $i$-smooth calculus, Springer, Dordrecht, 1999 | MR

[23] Mamatov M., Alimov K., “Differential games of persecution of frozen order with separate dynamics”, J. Appl. Math. Phys., 6:3 (2018), 475–487 | DOI

[24] Yong J., Differential games: a concise introduction, World Scientific, Hackensack, NJ, 2015 | MR | Zbl

[25] You Y., “Quadratic integral games and causal synthesis”, Trans. Amer. Math. Soc., 352:6 (2000), 2737–2764 | DOI | MR | Zbl