Differential games in a Banach space without discrimination
Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 1, pp. 90-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

\language=0 The paper is a continuation of author's research on the question of $\varepsilon$-equilibrium existence in the sense of piecewise program strategies in antagonistic games associated with nonlinear non-autonomous controlled differential equation in the Banach space and cost functional of a general form. Just as in the paper published earlier on this subject, the main result consists in sufficient conditions of $\varepsilon$-equilibrium. The difference is that we investigate the game without discrimination of players and without fixing Volterra chain. Application of results obtained in the paper is illustrated by example of the game associated with a nonlinear pseudoparabolic partial differential equation governing the evolution of electric field in a semiconductor.
Keywords: differential game, nonlinear differential equation in the Banach space, piecewise program strategies, $\varepsilon$-equilibrium.
Mots-clés : Volterra set chain
@article{MGTA_2023_15_1_a3,
     author = {Andrey V. Chernov},
     title = {Differential games in a {Banach} space without discrimination},
     journal = {Matemati\v{c}eska\^a teori\^a igr i e\"e prilo\v{z}eni\^a},
     pages = {90--127},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MGTA_2023_15_1_a3/}
}
TY  - JOUR
AU  - Andrey V. Chernov
TI  - Differential games in a Banach space without discrimination
JO  - Matematičeskaâ teoriâ igr i eë priloženiâ
PY  - 2023
SP  - 90
EP  - 127
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MGTA_2023_15_1_a3/
LA  - ru
ID  - MGTA_2023_15_1_a3
ER  - 
%0 Journal Article
%A Andrey V. Chernov
%T Differential games in a Banach space without discrimination
%J Matematičeskaâ teoriâ igr i eë priloženiâ
%D 2023
%P 90-127
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MGTA_2023_15_1_a3/
%G ru
%F MGTA_2023_15_1_a3
Andrey V. Chernov. Differential games in a Banach space without discrimination. Matematičeskaâ teoriâ igr i eë priloženiâ, Tome 15 (2023) no. 1, pp. 90-127. http://geodesic.mathdoc.fr/item/MGTA_2023_15_1_a3/

[1] Vorobev N.N., Teoriya igr dlya ekonomistov-kibernetikov, Nauka, M., 1985, 271 pp. | MR

[2] Vulikh B.Z., Kratkii kurs teorii funktsii veschestvennoi peremennoi, Nauka, M., 1973, 352 pp.

[3] Gaevskii Kh., Grëger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp.

[4] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka, M., 1984, 752 pp. | MR

[5] Korpusov M.O., “Usloviya globalnoi razreshimosti nachalno-kraevoi zadachi dlya nelineinogo uravneniya psevdoparabolicheskogo tipa”, Differents. uravneniya, 41:5 (2005), 678–685 | MR | Zbl

[6] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[7] Melikyan A.A., Obobschennye kharakteristiki uravnenii v chastnykh proizvodnykh pervogo poryadka. Prilozheniya k zadacham teorii upravleniya i differentsialnym igram, ANO «Izhevskii institut kompyuternykh issledovanii», M.–Izhevsk, 2014, 450 pp. | MR

[8] Petrosyan L.A, Zenkevich N.A., Semina E.A., Teoriya igr, Vysshaya shkola, M., 1998, 304 pp.

[9] Slobozhanin N.M., “Teorema suschestvovaniya dlya beskonechnykh pozitsionnykh igr”, Nekotorye voprosy vychislitelnoi i prikladnoi matematiki, 1, YaGU, Yakutsk, 1977, 37–42

[10] Slobozhanin N.M., Informatsiya i upravlenie v dinamicheskikh igrakh, Izd-vo S.-Pb. gos. un-ta, S.-Pb., 2002

[11] Chernov A.V., “O suschestvovanii $\varepsilon$-ravnovesiya v volterrovykh funktsionalno-operatornykh igrakh bez diskriminatsii”, MTIiP, 4:1 (2012), 74–92 | MR | Zbl

[12] Chernov A.V., “O volterrovykh funktsionalno-operatornykh igrakh s nefiksirovannoi tsepochkoi”, Vestnik NNGU im. N.I.Lobachevskogo, 2012, no. 2(1), 142–148

[13] Chernov A.V., “O ravnomerno nepreryvnoi zavisimosti resheniya upravlyaemogo funktsionalno-operatornogo uravneniya ot sdviga upravleniya”, Izv. vuzov. Matematika, 2013, no. 5, 36–50 | Zbl

[14] Chernov A.V., “O differentsialnykh igrakh v banakhovom prostranstve na fiksirovannoi tsepochke”, MTIiP, 12:3 (2020), 89–118 | Zbl

[15] Chernov A.V., “Operatornye uravneniya II roda: teoremy o suschestvovanii i edinstvennosti resheniya i o sokhranenii razreshimosti”, Differentsialnye uravneniya, 58:5 (2022), 656–668

[16] Chernousko F.L., Melikyan A.A., Igrovye zadachi upravleniya i poiska, Nauka, M., 1978, 270 pp. | MR

[17] Berkovitz L.D., Fleming W.H., “On differential games with integral payoff”, Contributions to the Theory of Games, III, Annals of Math Study, 39, Princeton Univ. Press, Princeton, 1957, 413–435 | MR

[18] Berkovitz L.D., “The existence of value and saddle point in games of fixed duration”, SIAM J. Control Optim., 23 (1985), 173–196 ; Errata and addendum 26 (1988), 740–742 | DOI | MR | DOI | MR

[19] Berkovitz L.D., “A theory of differential games”, Adv. Dyn. Games Appl., 1992, 3–22 | MR

[20] Berkovitz L.D., “Characterizations of the values of differential games”, Appl. Math. Optim., 17, 1988, 177–183 | DOI | MR | Zbl

[21] Berkovitz L.D., “Differential games of generalized pursuit and evasion”, SIAM J. Control Optim., 24 (1986), 361–373 | DOI | MR | Zbl

[22] Berkovitz L.D., “Differential games of survival”, J. Math. Anal. Appl., 129 (1988), 493–504 | DOI | MR | Zbl

[23] Chernousko F.L., Melikyan A.A., “Some differential games with incomplete information”, Lecture Notes in Computer Science, 27, Springer-Verlag, Berlin, 1974, 445–450 | DOI

[24] Crandall M.G., Lions P.L., “Viscosity solutions of Hamilton-Jacobi equations”, Trans. AMS, 277 (1983), 1–42 | DOI | MR | Zbl

[25] Elliott R.J., Kalton N.J., The existence of value in differential games, Mem. AMS, 126, 1972, 67 pp. | MR | Zbl

[26] Elliott R.J., Viscosity Solutions and Optimal Control, Pitman Research Notes in Mathematics Series, 165, Longman Scientific Technical, Harlow ; John Wiley Sons, Inc, New York, 1987, 95 pp. | MR | Zbl

[27] Evans L.C., Souganidis P.E., “Differential games and representation formulas for Hamilton-Jacobi equations”, Indiana Univ. Math. J., 33 (1984), 773–797 | DOI | MR | Zbl

[28] Fleming W.H., “The convergence problem for differential games”, J. Math. Anal. Appl., 1961, no. 3, 102–116 | DOI | MR | Zbl

[29] Fleming W.H., “The Convergence Problem For Differential Games, II”, Ann. Math. Study, 52, Princeton Univ. Press, Princeton, 1964, 195–210 | MR

[30] Friedman A., Differential Games, Pure and Applied Mathematics, XXV, Wiley Interscience a Division of John Wiley Sons, Inc., New York, etc., 1971, XI+350 pp. | MR | Zbl

[31] Friedman A., Differential Games, Conference Board of the Mathematical Sciences / Regional Conference Series in Mathematics, 18, American Mathematical Society (AMS), Providence, R.I., 1974, 66 pp. | MR | Zbl

[32] Ghassemi K.H., “On differential games of fixed duration with phase coordinate restrictions on one player”, SIAM J. Control Optim., 28 (1990), 624–652 | DOI | MR | Zbl

[33] Ghassemi K.H., “Differential games of fixed duration with state constraints”, J. Optim. Theory Appl., 68 (1991), 513–537 | DOI | MR | Zbl

[34] Isaacs R., Differential games I-IV, The RAND Corporation Research Memoranda RM-1391, RM-1399, RM-1411, RM-1486, 1954–1955

[35] Isaacs R., Differential games. A mathematical theory with applications to warfare and pursuit, control and optimization, The SIAM Series in Applied Mathematics, John Wiley and Sons, Inc., New York–London–Sydney, 1965, XXII+384 pp. | MR | Zbl

[36] Krasovskij N.N., Subbotin A.I., Game-Theoretical Control Problems, Springer Series in Soviet Mathematics, Springer-Verlag, New York, etc., 1988, XI+517 pp. | DOI | MR | Zbl

[37] Qian X., “Differential games with information lags”, SIAM J. Control Optim, 32 (1994), 808–830 | DOI | MR | Zbl

[38] Ramaswamy M., Shaiju A.J., “Construction of approximate saddle-point strategies for differential games in a Hilbert space”, J. Optim. Theory Appl., 141 (2009), 349–370 | DOI | MR | Zbl

[39] Roxin E., “Axiomatic approach in differential games”, J. Optim. Theory Appl., 3 (1969), 153–163 | DOI | MR | Zbl

[40] Varaiya P., Lin J., “Existence of saddle points in differential games”, SIAM J. Control, 7 (1969), 141–157 | DOI | Zbl